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1. INTRODUCTION 

Consider a function f(x, y) and give to y some value Y, while leaving x variable. 
This defines the function g(x) = f(x, Y). For a mathematician, g(x) and f(x, Y) 
represent the same function of one variable. For a computer scientist, a function 
is not only its definition but also an algorithm used to compute the values. From 
this point of view, g(x) and f(x, Y) stand for different things. If there is an 
algorithm for f(x, y), then f(x, Y) stands for the algorithm defined as follows: 
give to y the value Y and activate the algorithm for f(~, y). What g(x) means 
algorithmically is left open. There is often an algorithm for g(x) that is much 
more efficient than f(x, Y). For example, if f(z, y) does not depend on x at all, 
we can compute the constant f (x, Y) and define g(x) to be this constant. With 
f (x, Y), we compute this constant each time we need it. 
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Thus the following problem, known as partial evaluation of a function, can be 
formulated. Given an algorithm-presumably efficient-for f(x, y), and a value 
y = Y, create an efficient algorithm for g(x) = f(x, Y). This is one of the problems 
that can be solved by a program we call a super-compiler. As we shall see, the 
name reflects the way the program works and one of its immediate applications. 

Although supercompilation includes partial evaluation, it does not reduce to 
it. Supercompilation can lead to a very deep structural transformation of the 
original program; it can improve the program even if all the actual parameters 
in the function calls are variable. The supercompilation process aims at the 
reduction of redundancy in the original program, but this redundancy does not 
necessarily come from fixed values of variables; it can result from nested loops, 
repeated variables, and so on. We give examples of how a supercompiler trans- 
forms a two-pass algorithm into a one-pass, and how an improvement can result 
from the simple fact that the same variable is used in two places. 

A supercompiler is a program transformer of a certain type. The usual way of 
thinking about program transformation is in terms of some set of rules which 
preserve the functional meaning of the program, and a step-by-step application 
of these rules to the initial program. This concept is suggested by axiomatic 
mathematics. A rule of transformation is seen as an axiom, and the journal of a 
transformation process as the demonstration of equivalency. The concept of a 
supercompiler is a product of cybernetic thinking. A program is seen as a machine. 
To make sense of it, one must observe its operation. So a supercompiler does not 
transform the program by steps; it controls and observes (SUPERvises) the 
running of the machine that is represented by the program; let us call this 
machine M,. In observing the operation of M1, the supercompiler COMPILES a 
program which describes the activities of M1, but it makes shortcuts and whatever 
clever tricks it knows in order to produce the same effect as M1, but faster. The 
goal of the supercompiler is to make the definition of this program (machine) M2 
self-sufficient. When this is acheived, it outputs M2 in some intermediate lan- 
guage Lsup and simply throws away the (unchanged) machine M1. 

The supercompiler concept comes close to the way humans think and make 
science. We do not think in terms of rules of formal logic. We create mental and 
linguistic models of the reality we observe. How do we do that? We observe 
phenomena, generalize observations, and try to construct a self-sufficient model 
in terms of these generalizations. This is also what the supercompiler does. 
Generalization is the crucial aspect of supercompilation. A supercompiler would 
run M, in a general form, with unknown values of variables, and create a graph 
of states and transitions between possible configurations of the computing 
system. However, this process (called driving) can usually go on infinitely. To 
make it finite, the supercompiler performs the operation of generalization on the 
system configurations in such a manner that it finally comes to a set of generalized 
configurations, called basic, in terms of which the behavior of the system can be 
expressed. Thus the new program becomes a self-sufficient model of the old one. 

Supercompilers can have numerous applications, among which we would like 
to stress the following. 

Programming Systems and Compilers. Consider a programming language L 
whose semantics are defined operationally. This means that, in some algorithmic 
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metalanguage M, a function L(p, x) is defined such that if p = P is a program in 
L and x = X is some input data for this program, then the evaluation of this 
function is the application of P to X. If M is implemented, we can use L in the 
interpretation mode, which is, of course, very inefficient. Suppose, however, that 
we have a supercompiler. Given a program P, we supercompile (partially evaluate) 
L(P, x), with p fixed at P, but x: variable. The result is an efficient program in 
Lsup equivalent to P (i.e., the translation of P into Cup). This can then be 
translated into any other language. Moreover, if the same language LSup is used 
both at the input and at the output of the supercompiler, then we can automati- 
cally produce an efficient (compiled) compiler for L, and even a compiler gener- 
ator for an arbitrary L defined in M (see [3, 6, 10, 221). Thus a supercompiler is 
both a universal compiler and a metacompiler. 

With a good supercompiler we can create a programming system which fixes 
only a metalanguage and allows the user to introduce a hierarchy of ad hoc 
programming languages specialized for the current problem. Each such language 
will have to be defined by the programmer; but it need be only an interpretive 
definition in some semantic metalanguage. The programmer will have to deal 
with a mathematical model of his objects only, and will not have to think in 
terms of efficiency. The supercompiler will take care of transforming semantic 
definitions into compilers and efficient target programs. 

Design and Optimization of Algorithms. The design of algorithms, like other 
human activities, may include bursts of creativity, but it is mostly the use of 
some general rules, or methods, which could in principle be formalized and 
transformed into computer programs. Then why is there not much we can boast 
of in the computerized creation of algorithms ? Our answer is: because of the 
absence of good supercompilers. 

Indeed, suppose we have formulated such a general method, or meta-algorithm, 
in an algorithmic form. Then we have defined an algorithm A(s, 3~) which operates 
over the data x, but depends also on the specification s of a particular, special 
situation in which we apply the general method. Formally, this is the same 
situation as in the case of programming languages. But we cannot say that by 
A(s, x) we have defined a programming language for the design of algorithms, 
because a direct, interpretive execution of A(S, x) for any specific situation 
s = S would miss the point completely. It would not constitute the creation of a 
new algorithm, but simply the use of the general meta-algorithm A. However, 
the process of supercompilation applied to A(S, x) will create a new algorithm 
specialized for the situation S. Supercompilation is creation of algorithms. 

As an example, consider the following problem. Let a recursive predicate 
P(x, y) be given. For every given y = Y, find an x for which P(x, Y) is true. The 
variables x and y may stand for lists of unknown and known variables, respec- 
tively. The problem is, essentially, that of designing an algorithm to solve an 
equation. 

The general meta-algorithm A(s, y) for this problem has as its input the 
definition s of the predicate P and the value y = Y in P(x, Y). Its output should 
be a value X of x such that P(X, Y) is true. The method is: unfold the definition 
of P and narrow the set of possible solutions x until you come (if you come) to 
some satisfactory x. A problem of this type, namely, the construction of the 
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algorithm for subtraction of binary numbers, was considered in [19]. For this 
case, P(x, y) is a + x = b; y is the pair (a, b). It was shown in the paper cited that 
the general method yields, after supercompilation, the usual efficient algorithm 
of binary bit-by-bit subtraction. 

Optimization of algorithms (which is in fact hardly different from creation) 
can also often be expressed in terms of very general methods, defined in the 
interpretation mode as modifications of the algorithmic process. A direct imple- 
mentation of such a method would defeat its purpose because of overheads. But 
one can hope that supercompilation will eliminate overheads and lead to the 
same algorithm that would have been created in each specific case. 

Problem Solving and Theorem Proving. A program that can cause a deep 
transformation of function definitions can be used as a problem-solver and a 
theorem-prover. Take again the algorithm of binary addition, but in a simpler 
setting than above. Suppose we only want to know whether there is such an x 
that 11011110 + x = 100010100. Using the general algorithms for binary addition 
and equality, we define the predicate P(x) which checks that 11011110 + x = 
100010100 and give it to the CCNY supercompiler. It transforms P(x) to the very 
simple form which says that P(x) is T if and only if x = 110110 (see [23]). This 
can certainly qualify as problem solving. 

To prove the universally quantified statement (Ax)P(x), we have to transform 
the original definition of P(x) into P(x) = T identically. Examples of this kind 
can be found in [23]. In the present paper we give an example of program 
transformation that can be seen as proving the theorem: *S = S*, where S is 
some string of symbols, then S consists only of asterisks *. 

Error-Free Software. Proving the correctness of a program is theorem proving, 
so a supercompiler can be relevant. For example, if we want to check that the 
output of a function F(x) always has the property P(x), we can try to transform 
the function P(F(x)) into an identical T. 

But supercompilation is relevant in an even more direct way for the problem 
of the generation of error-free computer code. There are two aspects to supercom- 
pilation. The first is the algorithm of driving and some service programs (such 
as checking the correctness of a generalization, etc.) used in the construction of 
the graph of states. The second is the strategy of supercompilation which controls 
the process of decision-taking with regard to the course of driving, in particular, 
what configurations of the computing system shall be taken as basic. The first 
part is quite limited in volume and is not going to change with time. It can be 
written, carefully debugged, and, with a reasonable degree of certainty, considered 
error-free. The second part, on the contrary, is going to change all the time, and 
grow in volume as the methods we use in supercompilation become more sophis- 
ticated. The strategy may even include an interaction with the user, with the 
acceptance of all the possible errors resulting from that. However, no variations 
or errors in the strategy of supercompilation can lead to an incorrect result (i.e., 
to a program that is not equivalent to the original program) if the first part, the 
core of the supercompiler, is correct. 

Therefore, we can envisage the following programming system. The inputs 
of a programming job are of two kinds: (1) definitions of relevant concepts, 
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presumably limited in size, verifiable, and written without any concern about 
algorithmic efficiency; (2) very general methods, or meta-algorithms mentioned 
above, such as the finding of an object with required properties. The job specifi- 
cation then uses both kinds of entities. A supercompiler converts this specifica- 
tion into an exactly equivalent and efficient program. 

Knowledge Bases and Expert Systems. An expert system can be represented 
by a function E(q, lz), where q is a question to the system and k is its current 
knowledge. The procedure of getting the answer includes examination of knowl- 
edge and logical inference. The algorithms for this kind of activity are not 
sophisticated if represented in an abstract way, that is, in the interpretation 
mode. The trouble is that for a large-scale expert system the direct interpretive 
programs will be too slow. It is not only the question of a big volume of knowledge. 
An expert system will typically involve several conceptual levels: the basic 
knowledge K,; the rules Kl of dealing with the knowledge KO, which are referred 
to as a metaknowledge of the first level; the metarules K2 for applying the rules 
K, (the metaknowledge of the second level), and so on. If at each level we use a 
direct interpretation, the slowdown will grow exponentially with the number of 
levels. Yet in order to instruct the computer in how to behave intelligently, we 
must use, in one form or another, interpretive definitions of information handling: 
interpretation, after all, is the meaning of linguistic objects. The supercompiler 
helps to resolve this contradiction. Write a driver D,(Ki, Ki-1) of the ith level 
that applies the metaknowledge of the ith level as certain rules to handle the 
metaknowledge of the i - 1st level. Then supercompile Di(Ki, k) with the fixed 
rules Ki and a variable knowledge k. The result is an efficient program of 
knowledge-handling at the i - 1st level. This is essentially an automatization of 
what the makers of efficient expert systems do. When Ki changes, which presum- 
ably happens less frequently than changes in Ki-1, the driver must, of course, be 
resupercompiled. 

Supercompilation can also be performed throughout all levels of the system. 
Fix k = K and supercompile E(K, q) with a variable q. You have an expert system 
that cannot learn, but answers questions very quickly. You can restore the ability 
of the system to learn by endowing it with two memories: short-term and long- 
term. To answer a question, both memories must be scanned. The long-term 
memory has those procedures that are obtained by using a supercompiler with 
the knowledge present at the moment of the last supercompilation session. The 
short-term memory includes universal interpretive procedures operating on the 
incremental knowledge received after the last supercompilation session. Such a 
system can be both fast and able to learn. When it has no questions to answer 
(the periods of “sleep”), it will execute supercompilation procedures, converting 
its short-range memory into the long-range one. This would be a step towards a 
computer indiuidual (see [13]). 

2. HISTORICAL AND COMPARATIVE REMARKS 

Work on the supercompiler project was started by the author in Moscow in the 
early 1970s. Form its very inception, the project has been tied to a specific 
programming language, or rather metalanguage, Refal, which is defined in 
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Section 4. The philosophy behind the design of Refal was to have a language 
which would facilitate the formalization of metasystem transitions (i.e., transi- 
tions from a system to a metasystem) to be performed in the computer and 
repeated automatically as many times as necessary. The idea of a supercompiler 
is an outgrowth of that philosophy. 

The equivalence transformations necessary for supercompilation were defined 
in [19]. An important aspect of the philosophy of metasystem transition is the 
requirement that the algorithms of supercompilation be written in the same 
language in which the programs to be transformed are written. If this condition 
is met, then, having only a supercompiler, we can automatically produce compilers 
for newly defined programming languages; we have only to define the semantics 
of the new language in Refal through the process of program interpretation. That 
interpreters can be automatically converted to compilers by partial evaluation 
was first discovered by Futamura [6]. Several years later the present author 
rediscovered this independently in the Refal context; we also noticed that a 
compiler compiler can be automatically produced in this way (see [17, 21, 221). 
In the English language, the supercompiler project was first described in [20]. A 
systematic exposition of the project, including the definition of Refal and some 
programming techniques, can be found in [21]. 

Program transformation is a field in which a lot of work is being done currently 
(see a recent review [15]). All the usual arguments for the importance of program 
transformation systems are applicable, especially to supercompilers. We can find 
parallels between our method and the methods used by other researchers in this 
field; the work of the Edinburgh School, in particular, should be noted as very 
relevant (see [2]). The basic step in the process of supercompilation can be 
described as an application of the UNFOLD rule of Burstall and Darlington. 
Looping back and declaring the recurrent configuration basic is analogous to an 
application of the FOLD rule. Yet there are important differences between these 
concepts. Ershov [4] formulates partial evaluation in terms of transformation 
rules. We definitely want to avoid this approach. Supercompilation has its 
specificity, because of which presenting it as a stepwise program transformation 
misses an important point; it does not catch the essence of the method. 

In stepwise program transformation we take a program on the input, apply to 
it certain transformation rules, and produce the transformed program on the 
output. This is the way most program transformation systems work; some have 
hundreds of user-supplied rules. As we have mentioned, the supercompiler works 
differently. At no point is the original program really transformed; the supercom- 
piler only runs it, observes and analyzes its operation, and compiles an entirely 
new program. The FOLD rule applies an equation in the order inverse to its 
natural use in the computation process. The essence of supercompilation is in 
always moving in the direction of time, and never against it. This gives us a 
guiding principle in constructing various compilation strategies, and makes 
irrelevant the persistent problem of transformation systems: how to know which 
rules to apply and in which order to apply them. We never think in terms of 
combining rules (there are too many possible combinations!); we explore what 
actually happens in the computation process and construct a self-sufficient model 
of it. 
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In many applications of supercompilation, the function call for which an 
optimized program must be constructed has partially defined arguments. The 
idea to systematically use partial evaluation as a programming tool goes back to 
[12], and was further developed in [l, 3,4,6], and in a review paper [7]. Important 
work on partial evaluation in the context of programming systems is being done 
by N. Jones and coworkers in Denmark [ 10, 111. 

In the strategy of supercompilation that we use there are close parallels to the 
concepts of delayed rules [24], lazy evaluation of Lisp programs [8], and the use 
of suspensions [5]. Points in common can be found between our work and the 
latest work of other researchers in functional programming; but this is not the 
place for a review. 

3. BASIC DEFINITIONS FOR APPLICATIVE LANGUAGES 

We now proceed with more precise definitions of the basic concepts. Our for- 
malism is based on the concept of a computing system. Whenever we speak of 
functions, we have in mind computable partial functions. A function in such an 
approach is simply a process in the computing system dependent on some initial 
(input) parameters. 

Suppose we have a computing system (machine) that is finite at every moment, 
but capable of potentially infinite expansion. It can be in different states, and we 
assume that there is a language to describe these states. We call this language 
the basic descriptive language. We assume further that the elements (words) of 
this language are strings of letters in a certain alphabet that includes, among 
others, two distinguished characters, the left and right parentheses “(” and “)“, 
and that only those words are permissible in which the parentheses are properly 
paired. Accordingly, we call the words of the descriptive language expressions. 
The use of expressions instead of strings makes it easier to represent complex, 
structured objects (states of the computing system). Subsystems of a computing 
system can be naturally represented by subexpressions of the overall expression. 
For instance, the state of a computer might be described by the expression (C)M, 
where C is (represents the state of) the controlling device, and M is the memory. 
The subexpression C might have the form (R1)(&) . . . (R,), where Ri for i = 1, 
2 , . . . n, are binary words representing the state of the registers. 

The process of computing is a sequence of states of the computing machine, 
which are referred to as the stages of the process. A process may be deterministic 
or nondeterministic, finite or infinite. We distinguish passive and active states. 
A state is passive if, by the nature of the system, it cannot change in time. 
A passive state is an object, an unchangeable detail of the computing machine. 
An active state is capable, at least potentially, of changing in time. It stands 
for a process, not an object. If some stage of a process becomes passive, the 
process is finite, and this stage is its last stage. We can say that time stops for a 
process when it reaches a passive stage. While the stage is active, the process 
continues (even though it may infinitely repeat itself ). Expressions representing 
passive or active states are, respectively, passive or active. 

Each next stage in a process is the result of one step of the computing machine. 
If the machine is deterministic, the next stage is uniquely defined by the step 
function, which is a mapping from the set of active states S” to the set of all 
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states S. If it is nondeterministic, its operation is defined by the step relation, 
which is a subset of S” x S. When we add a definition of the step function or 
relation to the basic descriptive language, we have an equivalent of what is known 
as an applicative language. Our passive expressions correspond to constants, 
active to applications. 

Supercompilation is based on the analysis of computation histories in a 
generalized form. To do this analysis, we must extend our basic language to 
include means to describe generalized states of the computing system (i.e., certain 
sets of precise states). So the extended descriptive language will include expres- 
sions that represent configurations of the system. This is an important concept 
of the theory. A configuration is a set of precise states of the computing system 
or its subsystem. Not any set of states, however, but only a set that can be 
represented by an expression in the extended descriptive language we have 
chosen. The concept of a configuration is language-dependent. Consider, for 
instance, a subsystem D represented by one decimal digit. Its possible precise 
states are 0, 1, . . . , 9. We would probably want to have variables whose possible 
values are exactly digits. Let d be such a variable, and assume that variables are 
allowed as structural components in the extended descriptive language. Then the 
set of precise states 0, 1, . . . ,9 of D is a configuration because it can be represented 
by the expression d. Consider the generalized state of D that includes the states 
0 and 5 only. If we have a variable in the language that has (0,5) as its domain, 
then it is a configuration; if we have no such variable, it is not. We have to treat 
it as a union of the configurations 0 and 5. 

The expressions of the basic descriptive language describing precise states of 
the machine are referred to asground expressions; the expressions of the extended 
language, representing sets of precise states, are called nonground. Passive ground 
expressions are referred to as object expressions. 

Supercompilation includes a metasystem transition: we have a computer sys- 
tem, and create a metasystem for which the original system is an object of study. 
Moreover, we want the metasystem to be the same computing system as the 
object system (i.e., an identical copy of it). Nonground and active expressions 
representing configurations of the object system must become objects for the 
metasystem. Hence we need a mapping from the set of general (including active 
and nonground) expressions to the set of object expressions. We call such a 
mapping, M, a metacode, provided that it satisfies these two requirements: 

(1) M is homomorphic with respect to concatenation: M(E,&) = M(EI)M(E2). 
(2) M is injective: El # EB + M(EJ # M(E,). 

The metacode of E is denoted PE. Because of (2), metacoding has an inverse 
operation, demetacoding, denoted P-E. 

It would be ideal if the metacode, while transforming nonground and active 
expressions into object expressions, did not change object expressions at all. 
Unfortunately, this is impossible, owing to the following simple theorem: there 
is no metacode that transforms all object expressions into themselves. To prove 
it, suppose that we have such a metacode CL. Let E represent a nonground 
expression. The PE is an object expression, and ~PCLE = pE. Hence, E and pE, 
which are unequal, have the same image; this violates (2). Thus, any metacode, 
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though introduced to transform general expressions into object expressions, will 
have the (undesirable) effect of transforming object expressions also. The only 
thing we can do is to minimize the effect of metacoding on object expressions. 

From now on we limit ourselves to deterministic machines. Consider a ground 
configuration C1. Suppose it is active. The step function uniquely determines the 
next state of the system, which is another ground configuration CZ. If it is active 
again, the next stage follows, and so on. Thus a sequence of states Ci, Cp, . . . , 
correponds to every precise state. If one of these is passive, we take it as the 
result of the computation, and the history of computation becomes finite. Other- 
wise it is infinite, and there is no result. 

Now consider an arbitrary (nonground) configuration Ci. It defines a general- 
ized state of our computing system. We want to construct the generalized history 
of computation which starts with Cl. It will not be, in the general case, linear, as 
for a ground configuration, but will be represented by the graph of states and 
transitions, normally infinite. Its nodes are configurations. An arc from Ci to Cj 
represents a transition from Ci to Cj; it carries the condition under which this 
transition occurs. 

Supercompilation transforms an infinite graph of states into a finite one. This 
is achieved by looping back at certain points in the construction of the graph of 
states, and declaring some configurations basic. An easy case of looping back is 
when a configuration Cj is met which is a specialization of one of the previous 
configurations Ci (we say that Cj is a specialization of Ci if the set of precise 
states represented by Cj is a subset of that of Ci). This is the case of C4 and CZ in 
Figure 1. When this happens, we reduce Cj to Ci, which is shown by a dashed line 
in Figure 1. Unlike transitions between states, which are shown by solid lines, 
the reduction arcs do not stand for a real step in the computing system, but only 
for a change in the way the state is represented. 

The above is not the only case when we have to loop back. The other case is 
exemplified in Figure 1 by C5 and Ci. Although the former is not a specialization 
of the latter, we can decide that it is “close enough” to it to loop back; or, rather, 
it is “too close” to go on and be sure that the graph will be finite. Hence, we 
generalize Ci and C5, that is, construct another configuration, C6, such that both 
Ci and C5 are its specializations. Then we discard the subgraph originated from 
Ci, reduce Ci to C6, and go on with supercompilation from the node C6. 

A graph of states is self-sufficient if every configuration in it is either passive 
or reduced to another configuration and there are no circuits composed of 
reduction arcs only. The configurations found in a self-sufficient graph are basic. 
Such a graph is essentially a program applicable to all precise states covered by 
the basic configurations. A set of basic configurations (basis) can be communi- 
cated to the supercompiler at the outset, or it can be defined, in part or in full, 
in the process of supercompilation itself. 

The strategy of supercompilation is the algorithm that at every moment in the 
construction of the graph of states decides which of the following actions must 
be taken (this does not imply that any of these actions can be taken at every 
moment). 

(1) Reduce some configuration to one of the basic configurations. 
(2) Go on constructing the subgraph for some configuration by applying to it the 

step function of the computing system. 
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Fig. 1. Graph of states and transitions. 

(3) Declare some configuration basic. 
(4) Reduce one configuration to another. 
(5) Generalize two configurations. 
(6) Stop and output the graph. 

When designing a strategy for supercompilation, the following questions re- 
quire immediate answers: In what order should we consider configurations? 
Depth first or width first? Should we try to loop back after every step producing 
a new configuration? For a given configuration, what previous configurations 
must be considered as possible looping targets? Specifically, should we try only 
the ancestors, or must the configurations on the parallel branches also be 
included? How can we guarantee that the strategy leads to a finite graph? 

As we go into the details of the supercompilation process, dealing with an 
aribtrary computing system becomes progressively more awkward, and there is 
always the need for examples. Thus, from the next section on, we start using a 
specific applicative language, Refal. 

4. THE LANGUAGE REFAL 

Definition. In the present paper we define and use Refal in a mathematical-style 
syntax; the actual format required by the existing implementations is of no 
concern here. 

The elementary syntax units of Refal are of two kinds: special signs and object 
symbols (or just symbols). The special signs include: 

-structure brackets “(” and “)“; 
-activation brackets “(” and “)“; 
-free variables, which are represented by subscripted “s” (a symbol variable) or 

“e” (an expression variable), for example, sl, s,, e5. 

The object symbols used in Refal are supposed to belong to a finite alphabet, 
which may, however, vary from one use of Refal to another. We use the following 
as object signs: characters distinct from the special signs, subscripted and 
superscripted capital letters, Algol identifiers (sometimes underlined so as to 
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stand out). In computer implementation, we also allow the use of whole numbers 
as object signs (in which case, of course, the alphabet of object signs becomes 
infinite). 

We use capital italic letters A, B, . . . E, El, . . . , etc., as metasymbols to denote 
Refal objects. We agree that the subscripts i, j, k of variables, as in ei, may mean 
some subscripts, when this is clear from the context. 

A Refal expression is one of the following: 

-an empty string, which we may represent by nothing or by the metasymbol 
empty; 

-a symbol (i.e., an object symbol, not a special sign); 
-a variable; 
-E1E2, or (El), or (El), where El and Ez are expressions. 

An expression that is a symbol, a variable, (E,), or (El) is referred to as a 
term. An expression is passive if it does not include activation brackets; it is 
active otherwise. An expression without free variables is a ground expression; 
otherwise it is a nonground expression. A pattern is a passive, and generally 
nonground, expresssion. A passive ground expression is an object expression. 

An L-expression is a pattern which (a) contains no more than one occurrence 
of every expression variable (we say e-variable for short), and (b) contains no 
more than one e-variable on the top level in every subexpression (i.e., none of its 
subexpression can be represented as EleiEzejEs, where El, Ez, E3 are some 
expressions). Examples of L-expressions follow: 

Ael, BWE), el + (edkd, slexsl, (eJABCe,. 

Examples of pattern expressions that are not L-expressions are the following: 

k,MBCe,, el + et, elsdkl + ed). 

A Refal sentence has the form (L) = R, where L is an L-expression and R is 
an arbitrary general expression. The equality sign is just a symbol (not a special 
sign) used for visual convenience. The right side R can include only those 
variables that appear in the left side (L). The pattern L usually starts with a 
symbol that is referred to as the function symbol. A Refal program is a (ordered) 
list of sentences. 

Given an object expression E and an L-expression L, the matching operation 
E : L is defined as finding such a substitution S for the variables in L that applying 
5’ to L yields E. The values assigned to s-variables in substitutions must be single 
symbols, while e-variables can take any expressins as their values. If there is 
such a substitution, we say that the matching succeeds, and E is recognized as (a 
special case of) L. If there is no such substitution, the matching fails. 

Let E be an object expression and L an L-expression. The following algorithm 
performs the matching operation E: L and shows that if there is a substitution 
transforming L into E, it is unique (this holds as long as L is an L-expression, 
but may not hold for other patterns). We refer to E as the target and L as the 
pattern in matching. The pair E: L itself is referred to as a clash. Substitutions 
for the variables in L are assignments; they are written in the form A t V, where 
V is a variable and A an object expression. A list of assignments is a partial 
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environment, PENV; if the list includes assignments for all the variables in L, it 
is a total environment. 

The Matching Algorithm 
begin 
Set PENV empty; set STACK-OF-CLASHES to include one member E: L. 
NEXT-CLASH: 

Take CLASH from STACK-OF-CLASHES. 
CLASH-LOOP: Use the rule for any of the applicable cases. 
case 1. CLASH is empty : empty. Go to END-CLASH. 
case 2. CLASH is E: ei. Add E c ei to PENV. GO to END-CLASH. 
case 3. CLASH is SE : SL or ES : LS, where S is a symbol; put CLASH = E: L, go to 

CLASH-LOOP. 
case 4a. CLASH is SE: siL or ES: Lsi, and there is no assignment for si in PENV. Add 

S + si to PENV; put CLASH = E: L; go to CLASH-LOOP. 
case 4b. CLASH is SE: siL or ES: Lsi, and there is the assignment S t SC in PENV. 

Put CLASH = E :L; go to CLASH-LOOP. 
case 5. CLASH is (E,)E,: (L,)L 1 or E1(E2):L1(L2). Add (E,:L,) to STACK-OF- 

CLASHES; put CLASH = El : L,; go to CLASH-LOOP. 
case 6. If none of the above is applicable, the matching fails (recognition impossible). 

END-CLASH: If STACK-OF-CLASHES is empty, the matching succeeds, and PENV is 
the full environment. Otherwise go to NEXT-CLASH. 

end of the Matching Algorithm. 

The semantics of Refal are defined operationally by the Refal machine which 
executes algorithms written in Refal. The Refal machine has two potentially 
infinite information storages: the program-field and the view-field. The program 
field contains a Refal program, which is loaded into the machine before the run 
and does not change during the run. The view-field contains a ground expression 
which changes in time as the machine works; this expression is often referred to 
simply as the view-field. 

The Refal machine works by steps. Each step is executed as follows. If the 
expression in the view-field is passive, the Refal machine comes to a normal stop. 
Otherwise it picks up one of the pairs of activation brackets in the view-field and 
declares the term it delimits the leading active term. It then compares the leading 
term, say (E), with the consecutive sentences in the program field, starting with 
the first one, in search of an applicable sentence. A sentence is applicable if E 
can be recognized as the pattern L in its left side (i.e., the matching E: L is 
successful). On finding the first applicable sentence, the Refal machine copies its 
right side and applies to it the substitution resulting from the matching E: L. 
The ground expression thus formed is then substituted for the leading active 
term in the view-field. This ends the execution of the current step, and the 
machine proceeds to execute the next step. If there is no applicable sentence, the 
Refal machine comes to an abnormal stop. 

The definition of the leading active term may vary, so that we can have several 
variants of the Refal machine. Originally, the Refal machine was defined as 
evaluating subexpressions according to the rule “inside-out, from left to right” 
(known as applicative order). Then the leading active term is defined as the 
leftmost active term (E) with a passive E. This is also the way it works in the 
existing implementations. 
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However, an outside-in left-to-right Refal machine can also be used (the normal 
evaluation order). It will start by trying to apply the program sentences to the 
outermost activation brackets, first on the left. Then the expression E in the 
leading active term (E) is not, generally, an object expression, but may include 
some activation brackets, The matching process E: L must then be generalized 
as follows. We say that the active subexpression (El) of E does not prevent the 
matching E: L if the substitution of any expression for (El) has no effect on the 
success or failure of the matching; otherwise (El) prevents the matching. If the 
current matching is not prevented by some active subexpression, the outside-in 
Refal machine goes on and may complete a step with some values in the 
substitution resulting from the successful matching being active. If it finds that 
some subexpression prevents the matching, this subexpression becomes the next 
attempted leading active term. 

We can also construct a Refal machine with many step-executing processors. 
Such a machine will attach one processor to every activation brackets pair in the 
view-field. Parallel activations as in ((El )) ( E2) will be executed in parallel. As 
for nested activations, in the situation of prevention, the outer activation will 
wait until the preventing configuration is-partially or completely-computed. 

If the inside-out evaluation process is finite, the outside-in process will also be 
finite and yield exactly the same result. It may happen, however, that the inside- 
out evaluation never stops, while the outside-in evaluation results in a finite 
process (this situation is well known from the lambda calculus). The order of 
parallel activations does not effect the results. So we take as the basic Refal 
machine the inside-out left-to-right kind. This is referred to simply as the Refal 
machine. If a computation process is finite with this machine, all other kinds 
will produce the same result. But we can also write a Refal program meant 
specifically for outside-in execution. 

A function is defined by specifying (a) a general Refal expression F called the 
format of the function and (b) a Refal program which is its definition. Substituting 
some values for the variables in F, we put it in the view-field of the Refal machine 
which is loaded with the definition. If after a finite number of steps the Refal 
machine comes to a normal stop, the resulting object expression in the view-field 
is the value of the function. 

Examples. In the unary number system, zero is represented by 0, one by 01, 
two by 011, and so on. We want to define the function of addition for these 
numbers. Let the format be (+(eJe?). Then the definition is 

(+kJO> = e, 

(+k&J> = (+We,>l 

With the input values 01 for e, and 011 for e,, the Refal machine will exhibit the 
following computation process: (+(Ol)Oll), (+(Ol)Ol) 1, (+(Ol)O) 11, 0111. We 
could have chosen a different format (e.g., ( +(el)(ez)) or (add e,, e,), etc.) 

The function reversing a string of symbols can be defined as follows: 

(reverse slen) = (reverse ez)sl 

(reverse) = 
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As an example of the use of nested activation brackets in the right side, we 
define the adding machine for binary numbers: 

(addb(e,O)e,si) = ( addb(e,)e,)sl 

(addb(e,l)e,O) = (addb(eX) 

(addb(e,l)e,l) = (addb((addb(eJl))e,)O 

(addb(ex) = e,e, 

The format is (addb(el)e2). Note that the variables we choose for formats have 
nothing to do with the variables used in programs. Also, the variables in different 
sentences are in no way related (though we usually keep the same variables as a 
matter of convenience). The last sentence of the program for addb may not be 
understood immediately. It will work correctly because it will be used only in the 
situation where at least one of the two arguments e, and e, is empty. The program 
would be more readable if instead of that sentence we used these two: 

(addb(e,)) = e, 

(addb( )eY) = e, 

The language we define above is referred to as the strict Refal. It is the basis 
for equivalent transformation and automatic generation of programs. For con- 
venience of programming, however, we introduce some natural extensions of the 
strict language. The interpretive implementation of Refal allows the extensions, 
but the supercompiler requires strict Refal on the input. A special Refal program 
translates programs written in extended Refal into strict Refal. 

The first step to extend strict Refal is to remove the restriction on the left 
sides of sentences. This version of the language is referred to as basic Refal. It 
allows any pattern expressions in the left sides of sentences, not just L-expres- 
sions. When the pattern P in the matching E: P is not an L-expression, there 
may be more than one substitution transforming P to E. So a rule is necessary 
that would tell us which of the substitutions must be used. Our rule corresponds 
to matching from left to right: of all substitutions the one chosen is that which 
assigns the least (with respect to the number of constitutent terms) value to the 
leftmost e-variable; if this does not eliminate ambiguity, the same selection is 
made for the second e-variable from the left, and so on. 

Using arbitrary patterns, we can define the function chpm that changes every 
“+” into “-” in a string, as follows: 

(chpm el + ez) = el - (chpm e2) 

(chpm el) = e1 

When the argument E is successfully matched against el + e2, the character “+” 
in the pattern is associated with the first “+” from the left in E. So we can take 
el out of the activation brackets and apply chpm recursively to e2. To define this 
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function in strict Refal, we need three sentences: 

(chpm + ei) = -(chpm ei) 
(chpm sael) = s2 (chpm ei) 

(chpm) = 

The metacode transformation we use in Refal singles out one symbol, let it be 
the asterisk “*“, to build up the images of variables and activation brackets. The 
metacodes of si and ci are *Si and *Ei, respectively. The pair of activation brackets 
( ) becomes *( ). Parentheses and symbols distinct from * remain as they are, 
while * becomes *V. For instance, the active nonground expression (Fei((Gs,))) 
becomes, when metacoded, the object expression *(F*El(*(G*SX))). 

Discussion. Although almost any program can be written in almost any lan- 
guage, and evaluation of languages is very subjective, we believe that Refal is the 
best choice for the supercompiler project. Supercompilation deals with general- 
ized histories of computation. Refal’s definition through a mathematical machine, 
the mode of operation of this machine, Refal’s use of pattern expressions-all 
this is essential for successful supercompilation. Also, it is a historical fact that 
the very concept of supercompilation was suggested by the use of Refal. 

When compared with Lisp, Refal is different in data structure, in treatment of 
variables, and in the use of patterns. In Lisp there is only one way to construct 
data: forming a binary tree. A list is only a special binary tree written in a special 
notation. When we write something like (sum 16 25 36) in Lisp, we actually mean 
what in Refal would be represented as (sum(16(25(36( ))))). But we also have in 
Refal a simple concatenation of objects: sum 16 25 36, which can, unlike Lisp’s 
lists, be processed in both directions. The vertical and horizontal dimensions of 
Refal trees can be varied independently. 

While the data structure in Refal is more sophisticated than in Lisp, the use 
of variables is much simplified, which makes it easier to analyze the computation 
process. There are no global variables in Refal; neither are there variables which 
stay valid over a whole function definition. Free variables in Refal can be 
described as local to sentences. In a sense they are not variables at all, but simply 
details of the Refal machine used to express patterns. When we write, say, 
ABCe,Z, e, is a physical object, which occupies a certain geometric place in an 
expression and is used according to certain rules in pattern matching. This 
suggests the concepts of a configuration and its generalizations. 

The use of patterns is crucial for supercompilation. It also makes programs 
shorter and more readable, as is well known. Take the textbook example of the 
function ISECT that computes the intersection of two sets represented by lists. 
As written in Lisp it is 

(DEFINE (MEMBER A SET) 
(COND ((NULL SET) NIL) 

((EQUAL A (CAR SET)) T) 
(T (MEMBER A (CDR SET))) )) 

(DEFINE (ISECT SET1 SET2) 
(COND ((NULL SETl) NIL) 

((MEMBER (CAR SETl) SET2) (CONS (CAR SETl) 
(ISECT (CDR SETl) (SETZ))) 

(T (ISECT (CDR SETl) SET2)) )) 
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The same function defined in Refal: 

(ISECT( kJ> = 
(ISECThed(eazd) = sl (ISECT(ed(wJ) 

(ISECThedkd) = (ISECTkd(ed) 

It is worth mentioning that, as a rule, Lisp programmers habitually use the 
PROG feature, which is rather a retreat from the functional philosophy of the 
language. Although it is easy to define an analogue of the PROG feature in Refal, 
one does not really want to. Programming in Refal is strict functional program- 
ming. 

Prolog, like Refal, takes pattern matching as the main operation of the 
language. In many cases, a Prolog program will resemble the corresponding Refal 
program. For instance, to trim leading blanks in a list using Prolog, we could 
write the axioms: 

trim(’ ‘.L,T) t trim&, T). 
trim(l, L) 

and set the goal trim& T), where L is the list to be trimmed and T is the 
variable to which the result must be assigned. To do the same in Refal, we write 
the sentences: 

(trim ’ ‘ei) = (trim el) 
(trim el) = el 

and put (trim L) into the view-field. 
The differences between Refal and Prolog are of two kinds. First, Prolog uses 

the same data structures as Lisp (i.e., binary trees). Second, there are significant 
differences in the process of matching and its use. Expressions matched in Refal 
describe the state of affairs-the stages of certain processes. Unlike patterns, 
they include no free variables. The results of matching are always unique, and 
after a successful matching the function call is replaced by the right side of the 
sentence used. After the replacement has taken place, there is no way back. A 
Refal program applied to a function call describes a process, that is, a sequence 
of completely defined stages. In Prolog, the expressions matched are goals that 
describe desired properties and relations, not the situations already achieved. 
The results of matching are not, generally, final: we may have to return and 
match a goal to the “head” of another axiom. Both parties to matching may 
include variables (cross-binding). The operation of the Prolog machine is not a 
linear process, but a walk around a tree with repeated backtrackings. It is much 
more complicated and difficult to grasp than the operation of the Refal machine. 
The way a set of Prolog axioms works, even in very simple cases, is often far 
from obvious. Consider the function trim above. When writing and mentally 
testing it, one is likely to apply trim to some argument as an isolated goal. One 
will be convinced that it works correctly. And it will come as a surprise that, in 
a conjunction with another goal, one may get a wrong answer (see [Ml). 

Prolog is very successful as the language of a rather intelligent database. In 
our view, however, Prolog is not at its best when used to define algorithms proper. 
Take the textbook example below [ 141. The program of formal differentiation in 
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Prolog starts as follows: 

4x x 1) 
d(C, X, 0) c atomic(C). 
d(U+V,X,A+B)cd(U,X,A)&d(V,X,B). 
d(U- V,X,A-B)td(U,X,A)&d(V,X,B). 
. . . etc. 

Compare it with the analogous program in Refal: 

(Dsx/sx ) = 1 
(DSC/SI> = 0 
(De, + e,/s,> = (Lkls,) + (De,lsz) 
(De, - e,/s,) = (Deulsz> - @k/s,) 
. . . etc. 

We think of D as a procedure of differentiation. In Refal, we simply list the 
possible forms of the argument and write out the answers, as in a calculus 
textbook. Using Prolog, we have to take two additional steps in order to write 
the program. First we translate the procedure of differentiation into a relation 
between the input and output; then we interpret the list of relations as a 
procedure. Both steps are absolutely unnecessary. One of the results of this doing 
and undoing is the introduction of auxilliary variables, which we have no need 
for when programming in Refal. 

Since, in a supercompilation, we do an analysis of the algorithmic processes in 
a computer, Prolog is hardly the best choice. 

A number of functional programming languages have been proposed during 
the last few years, for example, OBJ2, Hope, KRC, and others. New functional 
languages keep appearing. They are similar to Refal in many respects; sometimes 
they are very similar. For instance, the language used in [16] is essentially a 
subset of Refal. To the best of the author’s knowledge, Refal, implemented 
efficiently in 1968, was the first in this family of languages. It is on the simple 
side of the spectrum, which is dictated by its use for program transformation. 

5. DRIVING 

The operation of the Refal machine can conveniently be described in terms of 
elementary operations that are essentially certain types of substitutions. We 
introduce two kinds of substitutional operations: assignments and contractions. 

An assignment is represented as E t V, where E is an expression and V is a 
variable. (Here, and in the following, it should be clear from the context whether 
a letter is used as a metasymbol for a Refal expression or just as a Refal symbol). 
The execution of this assignment results in the association of the value E with 
the variable V. To apply an assignment as a substitution to an expression, it 
must be put on the left side: (E t V)E1; this stands for the result of replacing 
every occurrence of V in El by E. 

A contraction is represented as V + L, where V is a variable and L is an 
L-expression. If the current value of V is an object expression E”, then the 
execution of the contraction is the matching E”: L. If this matching fails, we say 
that the contraction cannot be applied to V. If it succeeds, the resulting total 
environment contains an assignment for every variable in L, and we interpret 
these assignments as giving the new values of these variables. After the execution 
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of the assignment, the contracted variable V becomes undefined, unless it also 
appears in the right side of the contraction L. So the contraction can be read as 
“break down the value of V according to the pattern L.” For instance, if the 
current value of el is AB(X + Y)A, then the execution of the contraction 
el 4 s,elsX will succeed and result in the value A for sX and the new value 
B(X + Y) for el. To apply a contraction as a substitution, we put it on the right 
of the expression, so E,( V + E) = (E t V)El. 

Our notation, though unusual, is consistent and natural. It implements the 
following two principles: (a) when the formal object is seen as a substitution, the 
arrow is directed from the variable to its replacement, and the variable stands 
close to the transformed expression; (b) when it is seen as an operation in an 
environment, the old variables, the values of which are defined, are on the left, 
while the new variables being defined are on the right. 

As is well known, the effect of simultaneous substitutions is generally different 
from that of their sequential execution. Let VI, . . . , V,, be the free variables of a 
configuration C. Then (V,) . . . (V,) is referred to as the varlist of C, and denoted 
as var C. When we deal with simultaneous contractions or assignments, it is 
convenient to deal with one object, the varlist, instead of sets of variables. 
Suppose we have a set of simultaneous contractions (vi + Ll) . . . (vk + Lb), 
where v1 to vk are some variables from C. Take var C and apply all the contractions 
to it. The result, L, may not be an L-expression only, if some of the Li’s in the 
contractions had used the same e-variable. In such a case we rename the variables 
in the Li’s to avoid conflicts. So we assume that L is an L-expression. It gives a 
full account of the contractions applied, as well as of variables not affected by 
the contractions. If, for example, the varlist is (el)(s2)(e3) and the contractions 
are (s2 + A)(es + Be3), then L is (ed(A)(BeJ, which reminds us that there is 
also the variable el in the varlist that was not affected by contractions. Such list 
contractions are represented as V + L. In our example: 

kd(sdkd -+ (el)(ANBed. 

We also write assignments in the full form: E t V, e.g., 

W(B)kz + ABC4 +-- kl)(sdW. 

We often treat varlists as unordered sets. We write Vl 5 V2 to mean that every 
variable from VI is also in V,. If VI 5 V, and V2 5 V,, we say that Vl and V2 are 
equal as sets. At the same time, we must remember that a varlist is a definite 
Refal expression, and when taken in isolation its terms cannot be reordered. 

When only one variable from the full varlist, say el, is affected by a contraction, 
we may represent it by a single contraction term (ei + Ll). We can then find 
that we want a composition of several such terms. In fact, this is axactly how the 
generalized matching algorithm, to be discussed shortly, works. One should keep 
in mind, however, that the meaning of an individual contraction may depend on 
the full list of variables. Take the contraction el ---, s,el, for instance. Ifs, is not 
in the varlist, then this contraction succeeds whenever the value of el starts with 
any symbol; sX takes on this symbol as its value. If sX is in the varlist, then our 
individual contraction is actually a part of the contraction (e&J + (s,el)(s,). 
For it to succeed, the value of el must start with the symbol that is the current 
value of s,, not just any symbol. 
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In full contractions, we can rename the variables on the right side in any 
(consistent) way; the meaning of the operation will not be changed. For example, 
instead of the contraction above, we could write (el)(s,) + (sYel)(s,J. The only 
difference would be that what we called s, before is now called s,. When we have 
an individual contraction, we must make it clear, with respect to every variable 
in the right side, whether the variable is old (i.e., belongs to the current varlist) 
or new (i.e., was not used before). Repeated e-variables are not allowed in 
L-expressions. So we agree, in order to avoid unnecessary renamings, that an 
e-variable with a subscript already used in the varlist can be used in the right 
side of contractions only in the contraction itself (and only once, of course). 
Since in such a use the variable is redefined and not compared with another 
value, we do not call it an old variable: e-variables cannot be old. It is only 
s-variables that must be categorized in individual contractions as new or old. 

The rule for the composition (folding) of full contractions follows from our 
definitions: 

If we have a contraction V + L, the variables in L are said to be the derivatives 
of the variables in V. Our use of contractions is such that a contraction never 
appears for a variable that is not a derivative of the preceding varlist; such a 
situation would be senseless. 

The rule for folding assignments is 

If V2 I uar Ei, then (E2 t V2)(E1 t VI) = ((E2 t V2)EI c V,). 

Now consider the sequence (E t V)( V + L). It represents a situation when 
the varlist V is assigned the value E, after which we ask that it be restructured 
according to the pattern L. The assignment clashes with the contraction. To 
resolve the clash we must match E: L. In fact, the matching operation is the only 
operation we use; contractions and assignments, for individual variables and for 
varlists, are only special cases. 

If the target E in the clash E: L is an object expression, its resolution is given 
by the matching algorithm which is part of the definition of the Refal machine. 
Now we are interested in a situation where E may be a nonground, although still 
passive, expression. Thus both operands in the clash represent sets of ground 
(object) expressions, A ground expression Eg is an element of the set represented 
by E iff the matching Eg: E succeeds. The union of nonground expressions El 
and E2 considered as sets is represented as the sum El + E,; their intersection 
as E1*E2. For the matching of two nonground expressions, the following formula 
holds: 

E:L = & (var E + Lk)(Ek t var L), 1 5 k 5 N, (1) 

where the left side is a clash and the right side its resolution. For every additive 
term in the resolution, uar Ek is equal (as a set) to uar Lk, and 

E(var E + Lk) = (Ek t var L)L, 1sksN (2) 

is a subset of the intersection E*L. These subsets are disjoint, and their sum in 
(1) is the full intersection E*L. The algorithm to resolve a given clash follows. 
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The Generalized Matching Algorithm, GMA. Let the clash be E: L. Let W, = 
var E and Wl = var L. In the following, E and L will be used as variables, but W, 
and Wl are fixed, referring to the initial values of E and L. 

A partial resolution term, PRT, is a list contraction followed by assignments 
for a subset W/ of Wl. A CPRT (current Clash and PRT) is a clash and a PRT. 
The GMA is operating on a sum of CPRTs, referred to as STATE. Every term 
in STATE is processed independently. In the processing, a term may be elimi- 
nated, or give rise to more than one term. A term can be closed, which means 
that the clash in it disappears (being resolved), and the partial resolution becomes 
complete. In the end, the closed CPRTs (which become PRTs after closing) 
make up the sum in (1). If no terms are left, (k = 0), E*L is empty. We 
denote this result of the resolution as 2. It is the unity of the summing opera- 
tion: X + 2 = X. 

The update of the CPRT (E: L)( W, + Lk)(Ek t W[) by the PRT (var Lk + 
L’)(E’ t WY) is the result of the following transformation of the CPRT: 

1. Replace E by E(uar Lk + L’); 
2. Replace Ek by Ek (uar Lk + L’); 
3. Replace Lk by Lk (uar Lk + L’); 
4. Add (E’c W,“) to (Ek c W,‘). 

To update a CPRT by a sum of PRTs, we take one copy of the CPRT for each 
PRT, update it and sum the results. 

An internal s-clash is a clash S : S ‘, where S and S ’ are either specific symbols 
or s-variables from the same varlist var Lk of a CPRT. It is resolved according to 
these rules, where id is the identity contraction and A is an arbitrary symbol: 

1. S:S = id 
2. Si: S = (Si + S) 
3. A:si= (si+A) 
4. If none of the above, 2. 

The main procedure follows: 

begin 
Put STATE = (E: L) id. 
Until all terms in STATE are closed, do: 
begin Pick any of the CPRTs in STATE. Let C be the clash in CPRT, and PRT the 
partial resolution term. Use any applicable rule of the following: 
case 1. C is empty: empty. Close CPRT (by eliminating C). 
case 2. C is E: ci. Update CPRT by E c ci and close it. 
case 3. C is S ‘E: SL, or ES’ : LS. Here and in the following, S is either a symbol or a 

symbol variable and so is S’. If S is a variable for which there is no assignment 
in CPRT, put CPRT equal to (E: L) PRT and update it by S ’ c S. If S is a 
symbol, say A, or a variable whose assignment value in PRT is A, resolve the 
internal clash S ’ : A, let the resolution be R, put CPRT = (E : L)PRT, and update 
it by R. 

case 4. C is (EI)E2: (L,)L, or E2(EI):L2(L,). Using the GMA recursively, resolve the 
clash E, : L, starting with STATE = (El : L,)PRT, and let the result be R. Put 
CPRT = (E2 : &)PRT and update it by R. 

case 5L. C is cj E: SL. Update CPRT by (cj +) + (cj + sj*cj). Here and in the following, 
j ’ stands for a new variable index (i.e., one that has not yet been used in var E 
or its derivatives). 
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case 5R. C is Eej: LS. Update CPRT by (ej +) + (ej + ejsj,). 
case 6L. C is ej E: (L1)L. Update CPRT by (ej +) + (ej + (ej,)ej). 
case 6R. C is Eej: L(L,). Update CPRT by (ej +) + (ej + ej(ej,)). 
case 7. If none of the above is applicable, the current CPRT is eliminated. 

end processing terms. 
Collect all closed resolution terms as the output. If none, output 2 (matching impossible). 
end of the algorithm. 

It is easy to prove that the contractions uar E + Lk in (1) are pairwise 
incompatible (i.e., the intersection Lk*Lk’ for k not equal k’ is empty). The idea: 
all the branchings in cases 5L to 6R are such that one branch produces object 
expressions that have at least one term more than those produced by the other 
branch in comparable subexpressions. 

The GMA is a generalization of the well-known concept of unification in term- 
rewriting systems. The data structure in Refal is more general than the structure 
of terms formed by constructors. When we limit Refal expressions to that subset, 
the GMA is reduced to unification. 

To construct the graph of states and transitions of the Refal machine, we use 
driving. The idea of driving is to execute one or more steps of the Refal machine 
in the situation where the contents of the view-field are not completely defined, 
but are described by a nonground configuration which includes unknown sub- 
expressions represented by free variables. The Refal machine is not meant to 
deal with free variables in the view-field; we “drive” free variables forcefully 
through the sentences of the program. 

Let the leading active subexpression in Ci be (FE). Let the sentences for F be 

VW = RI 

. . . 

(FL) = R, 

For those values of the free variables in E with which E matches Ll, the Refal 
machine will use the first sentence. To find this subset, we resolve, using the 
GMA, the clash: 

E:L1 = Ck (uar E -+ Lt)(E$ c uar L,), 1 5 k 5 Nl. 

Under each contraction in the sum, the Refal machine will take the first sentence 
and replace the expression under concretization by (Et c uar L1)R1, because the 
assignment part of the resolution gives us the values to be taken by the variables 
in Ll in the process of matching. It is only the variables from Ll that are allowed 
to be used in RI, hence after the substitution we have an expression which 
depends only on the variables in E and its derivatives. 

Thus the first part of the graph of states for C1, corresponding to the first 
sentence in the definition of F, will consist of N1 branches: 

(uar E + Lt)CE, l~k~iV1, 

where at the end of each branch we have the new configuration: 

Cg = (Et t uar L&R:. 
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For those members of the initial configuration C1 which do not belong to any 
of the subclasses we separated, the first sentence will be found unapplicable. The 
Refal machine will then try to apply the second sentence, which we should take 
into account by separating another group of subclasses of E and adding it to the 
first group. Repeating this procedure for each sentence in the definition of F, 
and renumbering the contractions throughout the whole set, we come to the 
graph of states which can be represented by the expression: 

Cl((uar E + Ll)Ci 

+ (uar E + L2)C$ 

. . . 

+ (uar E + LN)Cf) 

where N = Ni + N2 + . . . + N,. The parenthesized sum of branches following Ci 
is referred to as the development of the configuration Ci, and denoted as dev C,. 
There is an obvious optimization that can be applied to the construction of the 
graph of states. If, for the ith sentence, the argument E is found to match Li 
without contractions, which means that E is a subset of Lip then the branches 
originating from all the sentences starting from the i + 1st can be omitted because 
they will never be used. 

The graph of states has a double significance. First, it is a history of compu- 
tation, and we can use it in this role for analysis of algorithms and equivalent 
transformation of functions. Second, since it is a generalized history, it is a ready 
program to execute one or more steps of the algorithmic processes described by 
the initial configuration of the graph. Indeed, let the values of the variables in C, 
be given. Then we can apply the contractions on the branches to these values, 
and use the first applicable branch to make the step from C1 to C2. If we have 
the graph of states for C2, we can make one more step, and so on. The ordering 
of the arcs in the graph of states is important. The groups of branches originating 
from different sentences must be ordered in the same way as the sentences in 
the original definitions. The ordering of branches within groups, though, is 
immaterial, because the corresponding contractions are, as we know, incompati- 
ble. 

If the initial configuration Ci is (Fel), the resulting graph will have exactly 
one branch, (ei + Li)Ri, for each sentence, where Li is the left and Ri the right 
side of the sentence. Thus, the Refal program is nothing else but the collection 
of transition graphs for the configurations of the form (Fel), where F runs over 
all the functions used. We can combine all these graphs into one graph, which 
we denote by G&, by introducing the special variable e. which stands for the 
contents of the view-field. So the contraction e. + (F”el) should read: “if the 
configuration (Fmel) is in the view-field, then.” The total graph is 

Got = ((eo + (F’el)) deu (Fh) 

+ (e. --) (F2el)) deu (F2el) 

. . . 

+ (e. -+ (F”el)) deu (F”el)) 
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It is also convenient to end each branch by assigning the resulting configuration 
to eo, which is read: “put C2 into the view-field.” Now every branch in the total 
graph, as well as in configuration developments, consists of contractions and 
assignments only. It starts with a contraction for eo, which specifices the config- 
uration we put in the view-field, and ends with the assignment to eo, which 
specifies what will appear in the view-field as the result. The development of a 
configuration C is different in that its branches start with contractions for the 
variables of C. The total graph may be viewed as deu eo. 

In the development of Ci we can apply driving to every active configuration 
C!j, replacing it with its development. We shall then have the history of two steps 
of computation starting with Cl. Now we can drive all active configurations in 
the developments of all C& and so on. At every stage of this process we have a 
tree where the walks represent generalized computation histories. Every walk 
ends either with a passive expression (terminated walk) or with a call of some 
configuration. 

If we use the breadth-first principle and drive indefinitely long, we construct 
an infinite tree without active configurations, which includes all possible com- 
putation histories. Some walks in this tree may terminate, while others may be 
infinite. A walk that terminates in n steps has the form: 

(uar Cl + Ll)(uar Ll + L’) . . . (uar Ln-’ + L”)(E” t eo), 

where En is a passive expression which can include only the free variables from 
L”. We can fold all n contractions into one (uar Ci -+ L). Recalling that we deal 
with the development of Cl, we can write the formula of a terminated walk as 

(eo+C,)(uarC1+L)(E”teo). 

This is essentially a formula for one step of the Refal machine. A configuration 
can be seen as a function of its free variables. Each terminated walk in the 
infinite driving of C1 gives a subset of the domain of C1 and the algorithm of 
computing Ci on this subset by one Refal step, that is, by simply restructuring 
C, into E”. We call these subdomains the ultimate neighborhoods in the compu- 
tation of C1. Infinite driving breaks down the domain of the initial configuration 
into ultimate neighborhoods. It is analogous to the enumeration of the pairs 
argument-value in the theory of recursive functions. In our case, each pair consists 
of C, (uar C, + L) and E” (i.e., a pair of sets of expressions, not individual 
expressions); the rule of transforming the argument into the value goes with the 
pair. 

6. EXAMPLES OF SUPERCOMPILATION 

In Section 3 we defined how supercompilation is different from the construction 
of the infinite graph of states through driving. Space limitations do not allow us 
to go into detail of possible strategies of supercompilation. We simply discuss 
some examples of supercompilation as performed by the CCNY supercompiler. 

The final outcome of supercompilation will again be in Refal, which allows to 
evaluate the optimizing effect of the transformation. It is easy to convert a graph 
resulting from supercompilation into a standard Refal program. To every 
basic configuration, Ci, a function is put in correspondence with the format 
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(Ci uar Ci). The walks in the graph have one of the two forms: 

passiveend: (UUrCi-+L1)(UUrL’+L2). . . (uarL”-‘+L”)(E”=+eo) 
active end: (uar Ci*L’)(uur Ll + L*) . . . (uarL”-‘+ Ln)(E”t uar Cj)(Cj+eJ 

In each walk we fold the contractions; let the result be (uur Ci + L). Then we 
form the sentence ( CiL) = En in the case of a passive walk-end, and the sentence 
( CiL) = (Cj E”) if the walk-end is active. Taking all sentences in their order, we 
have the definition of the function Ci. Taking the definitions for all basic 
configurations, we have the complete Refal program equivalent to the original 
program as far as the computation of the initial configuration C1 is concerned. 

Let us consider a very simple example of supercompilation. Take the following 
definitions: 

(F”Ael) = B(F”el) 

(Fas2el) = s2(F”el) 

(F”) = 

(F6Bel) = C(Fbel) 

(Fbwl> = s2(Fbel) 

(Fb) = 

WI) = (Fb(F”el)) 

Let the initial configuration C1 be (Fel). After the first step of driving, it 
becomes, without any branchings and contractions, (Fb(F”el)). We call such 
configurations as (Fe,) transient. There is no need to keep them in the memory 
of the supercompiler. We simply redefine C1 as (F”(F”e,)). According to the 
inside-out semantics of the standard Refal machine, the evaluation of these 
nested function calls requires two passes of the argument el. However, there is 
nothing to prevent us from using the outside-in principle during the driving as 
an optimization technique. Whereas on the programming level we can choose the 
inside-out semantics for its simplicity, or the outside-in semantics for its sophis- 
tication, the supercompiler should always use the outside-in evaluation in order 
to implement a more efficient algorithm. The only risk we run is that the domain 
of the function will be extended, but this is hardly a risk at all-and in this 
specific case even this does not happen. So we start from the outside, trying to 
drive the call of Fb. We immediately find, however, that the driving is prevented 
by the inner call of F”. So we go inside and drive this call. This results in the 
graph: 

(eo + CJ((e, + Ael)(FbW%)) +- eo 

+ (el -+ s2eJ(Fbs2(F”ed) + eo 

+ (el + empty)empty t eo) 

(1) 

What should we do now? At every step of supercompilation we must decide 
whether each active configuration should be driven further, be declared basic, or 
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reduced to a previous configuration. Even though the CCNY supercompiler will 
make the required choice automatically, we have to present its choice here 
without explanation, since we do not go into a formal definition of the strategy 
we use. So we decide to go on with the first active configuration we see in (l), 
that is, (FbB(F”el)). We again start from the outside, but this time we find that 
the inner active expression does not prevent us from successful matching and 
driving. The development is a very simple graph: 

C(Fb(Faee,)) c e. (2) 

The active configuration here is identical to C1, which is basic by definition, so 
we do not drive it further. 

The driving of the second active configuration in (l), (Fbsz(Fael) ), yields 

(s2 4 B)C(Fb(Fael)) t e. 

+ s2(Fb(F”el)) c e. 
(3) 

Again, the end configurations are all identical to Ci. Substituting (2) and (3) in 
(l), and reducing the end configurations to C, (which in this case is trivial), we 
have the final graph: 

(eo -+ Cdkl --+ AedC(Cl(el)) - 4 

+ (el~s~el)((s~~B)C(Cl(el)) +e0 + s2(Cded) +-e0) 

+ (el + empty)empty t eo) 

Thus the only function in the basis is C1. Folding contractions in this graph, we 
have the Refal program: 

(C&b)) = C(Gkd) 

(G(k)) = C(Gkd) 

(G(s2ed) = s2(G(ed) 

If the outside-in execution of a Refal program results in exactly the same steps 
as the inside-out execution, the program is called bidirectional. The program for 
(C,(e,)) is bidirectional because there is always only one active term in the view- 
field. The original program for (Fei) is not bidirectional. Its inside-out execution 
requires 2n loops if the length of the input string is n. The outside-in (lazy) 
evaluation involves only n loops. It is well known, however, that lazy evaluation 
entails certain overheads, because of the necessity of analyzing at every step 
which of the activation brackets must be developed first. The use of the super- 
compiler gives the best solution to the problem. It implements the same efficient 
algorithm as the lazy evaluator, but executes the overhead operations at compile 
time. This results in a bidirectional program that reflects the semantics of the 
outside-in evaluation but can be directly executed on the simple inside-out 
machine. The supercompiler transforms a two-pass algorithm into a one-pass. 
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It is not always the case, though, that the outside-in evaluation is algorithmi- 
cally better than the inside-out evaluation. Consider the initial configuration: 

(repW”ed > 

where the function rep3 (repeat three times) is defined as 

(rep3 e,> = (eJkJ(e,) 

(4) 

With the inside-out rule, we compute F” and then make two copies of the result 
and form a list of the three identical subexpressions. With the outside-in strategy, 
we find that the step execution for the function rep3 is not prevented, so we 
make the step, which results in the configuration: 

When this configuration is evaluated, the function call (F”el) is evaluated three 
times-an obvious waste. 

The outside-in evaluation strategy can be modified so as to bar this effect. In 
Refal it is easy to keep track of the copying of the values of variables. We call a 
variable duplicated if in the right side of the sentence there are more occurrences 
of this variable than in the left side. Duplicated variables can be marked in the 
left sides of a program’s sentences by way of preprocessing. Now, when the 
supercompiler (or a direct outside-in evaluator) establishes that a Refal step is 
not prevented by any of the inner active terms, it takes the additional step of 
checking that none of the duplicated variables (at this moment they have already 
been assigned definite values) has active subexpressions. If this is not the case, 
the step execution must be delayed, and the active subexpressions of the dupli- 
cated variables developed first, in some order. 

It does not always happen that every active configuration called in the graph 
of states can either be driven further or can be recognized as one of the 
configurations already declared basic, For example, redefine the function F” 
above as follows: 

(F”ed = (F’( kl) 

(F%dAed = (F’(elBkd 

V”(edwd = V”(els,kd 

(F’kd) = el 

Let the initial configuration be (Fel) again. After the obvious two steps, we have 
(Fb(F’( )el)) as the new C,. Driving from the outside, we find that we cannot 
make a step in Fb, we therefore make a step in F’: 

(eo + G)((el + A4(FbV”(~)ed) +- eo 

+ (el - wJ(Fb(F’b&l)) +- eo (5) 

+ kl -+ emp&) Vb> + ed 

Neither of the two active configurations here coincides with or is a special case 
of Cl. We try to drive on. We can see that the Fb call will not be ready for 
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development again, and will never be ready as long as F’ is called recursively, 
because F’ puts each new symbol in its own “pouch,” not outside, as F” does. 
Since the recursive calls reproduce themselves at each step, the driving could go 
on infinitely. This is the situation when a new configuration Cz is “dangerously 
close” to the old C1 (the same function F’ is being developed), so that we cannot 
simply drive it on, yet we cannot reduce C2 to C1. We have to construct a 
generalization of C, and C2, (i.e., a configuration C, such that both Ci:C, and 
C, : C, succeed). Then we reduce the old configuration Ci to C,, declare C, basic, 
and develop it in the hope that this time we will be able to close the graph. 

The possible algorithms of generalization turn out to be rather complex in the 
full Refal. If we limit ourselves to constructor-formed trees, generalization 
simplifies. We cannot go into detail here, but in our example the simple technique 
known as left-to-right L-generalization leads to success. Going from left to right 
in both configurations, we factor out those structural components of the matching 
process that are the same and, when they are not the same, we replace the whole 
remaining subexpression by an e-variable. So the generalization of empty with 
any nonempty expression is an e-variable; different symbols generalize to a 
symbol variable, and so on. 

In supercompilation, we use the depth-first principle as the basic approach. 
The generalization of the first new configuration (Fb(F’(B)el)) with the old one 
(Fb(F’( )ei)) yields (Fb(F’(ez)el)). Taking this configuration as the new basic 
(C2(e1)(ez)), and redriving it from the moment of generalization, we transform 
(5) as follows: 

(e0 --, Cdkmpty +- e2)(C2klk2)> +- e0 

ko + W(el - Aed(FbV%dh)) + eo 

(6) 

+ kl -+ s3el)(Fb(F’(e2s3)el>> +- eo 

+ kl -+ empty)(Fbed + ed 

Now the first two active configurations in the development of C2 can be recognized 
as CZ. The third one will be found basic, and the program for it will be identical, 
except for format differences, to that for Fb. In the end, we have the program: 

(Clkl)> = (C2( kl)> 

(WMk2)) = (MehGV) 

(Ch3eAk2)) = (C2kAk24) 

(C2( )k2)) = (C&2)) 

( C@el)) = C( We,)) 
( C3(s2el)) = s2( C3(el)) 

(Cd 1) = 

This program differs from the original one in that there are no nested calls in 
the right sides. This is the result of changing the basis of the program to include 
a nested configuration of the original functions. It does not make the new program 
significantly more efficient, though, only a bit easier to implement. 

In the preceding we have tacitly assumed that there are no nested configura- 
tions in the graph resulting from supercompilation. This is not always the case, 
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however; instead of taking the combination (Fb(F’(e2)e1)) as a basic configura- 
tion, we could decompose it as 

((FYe&d + h)Ph) + e0 

Here the variable h1 stands for the “hole” effected by the removal of a subexpres- 
sion. It is basically the same as an e-variable, since the removed subexpression 
may evaluate to anything. But it is convenient to have the holes be syntactically 
different. Both the inner configuration (F1(e2)el) in this case, and the remaining 
outer configuration (with holes replaced by e-variables), are declared basic in 
decomposition. 

In the preceding example, we could, in the very beginning, decompose 

Cl = (P(JT h>> = ((F’( h> +- hW%) + e0 

Then, after a generalization, (F’(e2)el) and (Abel) would be declared basic, and 
the transformed program would reproduce the original one. While in this case 
we could decompose or not, in other cases decomposition may be necessary to 
construct a finite graph. Take the recursive definition of the factorial in the 
unary system: 

(fact 01) = 01 
(fact e,l) = (mult(e,)(fact e,)) 

For C, = (fact e,), we have, after the first step of driving: 

(e. 4 C,)((e, + 01)Ol t e. 
+ (e, * e,l)(mult(e,)(fact e,)) t eo) 

We must recognize here that the leading active subexpression in the second 
branch is a match to C1 (i.e., basic), and take it out by decomposition. This leads 
to declaring (mult(e,)el) basic, too. If we do not do so, but simply drive on, we 
face an infinite sequence of nested calls: 

(mult(e,)(fact e,)) 
(mult(e,l)(mult(e,)(fact e,))) 
(mult(e,ll)(mult(e,l)(mult(e,)(fact e,)))) . . . 

Another reason why decomposition may be necessary is the use of built-in and, 
in Refal, undefined functions. Such function calls must either be immediately 
computed, if it happens that all their arguments are known, or treated as basic 
configurations. Using the host computer’s numbers, we can define the factorial 
as follows: 

(fact 1) = 1 
(fact e,) = (mult(e,)(fact(prec e,))) 

where the functions mult and prec are built-in. When the nested call appears in 
the graph and is developed, the call of (prec e,) must be taken out. Then fact is 
taken out as basic, which results in a complete decomposition. 

Consider an example that shows how a supercompiler can deal with another 
type of redundancy, the occurence of the same variables more than once in the 
initial expression. The problem we want to solve can be formulated as a theorem, 
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namely: If *S = S*, where S is a string of symbols, then S consists of asterisks * 
only. In algorithmic terms, we define equality by 

(=he2he3)) = (=k2)(e3)) (El) 
(=( )( )> = T W’) 
(=e,) = F (E3) 

and try to transform the program for the configuration C1 = (=(*e.J(eZ)) into a 
program that simply checks that all the symbols in e, are asterisks. 

So we start with driving the equality call in Ci. Since it is not quite trivial, let 
us trace the use of the GMA. We match C1 to the left side of (El). First we have 
case 4 (i.e., two subproblems: *es:sle2 and e, * :sies). The first one is resolved 
easily and results in one PRT, which is (* c sl)(e, t e2). Resolving the second, 
we face case 6L, which produces a pair of contractions (e, +) and (e, + sle,). 
(Note that we could use s1 instead of s4, since the variable sj’ in the rule must be 
new only with regard to the varlist it belongs to, and the actual implementation 
of the supercompiler will do so in this situation. However, for the convenience of 
the reader, we pick up an entirely new variable.) Applying the contractions, we 
have two CPRTs: * : sle3 and s4e: : sle3. Since s1 has taken the value *, we have 
case 3 with internal clashes in both CPRTs. The clash * : * is resolved trivially in 
the first one, while in the second we have s4 -+ *. In both terms, the matching 
then succeeds. The result of matching with the left side of (El) is two contrac- 
tions, e, + empty and e, + *es. Thus the driving through (El) produces two 
branches: 

(es -4 (=(*)(*I) +-- e0 (Bl) 
+ (e, +- *es) (=(**es)(*es *)) c e. 032) 

The second sentence, (E2), is not applicable; driving through (E3) results in 
the third branch: 

F t e. 033) 

The end configurations in (Bl) and (B2) are transient. In one more step of 
driving we come to the graph: 

(eo -+ C&k, -4 T + eo 
+ (es -+ *es) (=(*&, *I) + e0 

+ F t eo) 

The only active configuration here is reduced (identical) to Ci, and we come to 
the program: 

(G( )) = T 
(C,(*e,)) = (G(e,)> 
(G(e,)> = F 

which is exactly what we want. 
More examples of the work of the CCNY supercompiler can be found in [23]. 

The examples illustrate the following applications of supercompilation: program 
specialization, program optimization, the use of interpretive definitions of 
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programming languages to produce efficient compiled programs, problem solving 
of different kinds, and theorem proving. 

7. THE SUPERCOMPILER AS A COMPILER 

We now give a more substantial example of the work of the CCNY supercompiler. 
In accordance with the procedure described in Section l(a), we define the 
semantics of a programming language in Refal and write a program in that 
language. The supercompiler then translates it into a target language. The object 
language we choose is a simplified structured FORTRAN. There are no explicit 
declarations and no subroutines. There is only one type of data: integers. The 
usual arithmetic and logical expressions are allowed, as well as the input/output 
procedures READ and OUT. Control transfer is managed by if- and while- 
statements. We call this language EXSEQ (for “execute sequentially”). The 
program in EXSEQ we are going to translate is as follows: 

(1) READ N; 
IF N < 0 THEN OUT(‘ERROR’) ELSE 
IF N = 0 THEN OUT(l) ELSE 

(F := N; 
WHILE N > 2 DO(N := N - 1; F := F*N); 
OUT(F)) 

The complete semantical definition of EXSEQ is too long (about 70 lines in 
Refal) to reproduce in full, but we would like to give an idea of what it is like 
and how it works. The main semantic function has the format (exec P on (S)), 
“execute the program P on the state S “. The state of the computing system is 
defined by a list of terms (Identifier = Value). Two standard identifiers, INPUT 
and OUTPUT, for the input and output streams, must always be present in the 
state. When P is interpreted, we put in the view-field (exec P on ((INPUT = 
(input))(OUTPUT =))). Here (input) is the call of the input function of the 
Refal system, which provides the input for P. The original value of OUTPUT is 
empty. When we want to translate P, we supercompile the call (exec P on 
((INPUT = ei)(OUTPUT =))), and, in the supercompiled program, interpret ei 
as the input stream. 

The function exec is defined as follows: 

(exec el; e2 on (e,)) = (exec e2 on ((exec el on (e,)))) 
(exec el on (es)) = (exstat el on (e,)) 

which expresses the semantics of sequential execution of statements separated 
by semicolons. In the definition of the function exstat, “execute statement,” we 
introduce, when necessary, special functions for executing special kinds of state- 
ments: 

(exstat s, := e, on (e,)) = (exass(s,) (eval e, on (e,)) ) 
(exstat IF e, THEN el ELSE e2 on (e,)) = (exif (el> (ez) (eval e, on (e,)) ) 
(exstat WHILEe, DO e,on (e,)) = (exwhile(e,)(e,)(eval e, on (e,))) 
(exstat READ s, on (e1(INPUT=(e,)e,)e2) = (exass(sx)(e,)(el(INPUT=e,)e2)) 
(exstat OUT(e,) on (es)) = (out(eva1 e, on (e,))) 
(exstat(e,) on (e,)) = (exec el on (e,)) 
(exstat on (e,) ) = e, 
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In these statements, we use the simple character of the syntax of EXSEQ; 
otherwise we would have separated the syntax analysis from the interpretation 
of the resulting tree. Identifiers are symbols (atoms) of Refal, thus we use s, for 
an identifier while parsing the assignment statement (the first sentence); the 
value of e, is then defined uniquely by the rules of Refal matching. The evaluation 
function eual returns (V)(S ), where V is the value of the expression and S is the 
state after evaluation. The function exuss: 

(exassbxku)kl(sx = e&2)> = kl(s, = 44 
(exass(sxkH4> = ((s, = eJ4 

changes the value of s,, if it had one before, or adds a new term to the state if it 
did not. 

When if- and while-statements are processed by e&at, the condition e, is 
evaluated first. The function exif is defined in the obvious way: 

(exif(el)(ez)(T)(e,) = (exstat el on (e,)) 
(exif(eJ(e&(F)(e,) = (exstat e2 on (es)) 

and exwhile is defined in a similar manner. The read statement expects that the 
INPUT list is not empty (otherwise, an abnormal stop would occur). It chops off 
the first element of the list and assigns it to s,. OUT evaluates its argument and 
calls the function out, which adds it to the OUTPUT list and prints it out. 
Parentheses can be used as begin-end brackets. The empty statement leaves the 
state unchanged. The function eual is defined in the same style as exstat. 

Unlike the examples in the preceding section, where we used Refal as the target 
language, we express the graph of states resulting from supercompilation in terms 
of an assembler-like language. Both the Refal graph and its equivalent in the 
assembler-like language are essentially flowcharts; one could write a program 
that would do the conversion, even though in this case it was done manually. 
The configurations of the Refal graph become labels in the assembler program. 
The Refal variables are converted into symbolic names; we used the following 
coding: el in the configuration C, becomes E41, e2 in Csa beomces E282, and so 
on. When a variable is simply passed from one function to another, we retain its 
original notation. In our case, the structure of the Refal graph after supercom- 
pilation (unlike the structure before supercompilation) is very simple, so that no 
recursive procedures are required. We simply translate configuration calls as go- 
tos (and skip those that point to the next statement). We keep all configuration 
labels in the program, even though only a few are used in go-tos, in order to give 
an idea of the structure of the Refal graph. This is the supercompiled program: 

Cl: equivalence E21 = input-stream; 
C2: E41 := head(E21); E42 := tail(E21); 
C4: E53 := E41 - 0; 
C5: if E53 < 0 then begin print(‘ERROR’); 

STATE := (‘iV=’ E41)(‘INPUT=’ E42)(‘OUTPUT = ERROR’); 
normal-stop 

end 
else go-to C7; 
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C7: if E41 = 0 then begin print(l); 
STATE := (‘,’ O)(‘INPUT=’ E4Z)(‘OUTPUT=’ 1); 
normal-stop 

end 
else go-to C9; 

C9: E281 := E41; E282 := E41; E283 := E42; E284 := 2 - E41; 
C28: if E284 c 0 then go-to C38 

else begin print(E281); 
STATE := (‘F=’ E281)(‘N=’ E282)(‘INPUT =’ E283) 

(‘OUTPUT=’ E281); 
normal-stop 

end, 
C38: E282 := E282 - 1; 
C42: E281 := E281*E282; 
C44: E284 := 2 - E282; go-to C28; 

The major difference between this program and the program one would have 
written as the translation of (1) is that the supercompiled program makes an 
assignment to STATE each time it comes to a normal stop. This is a consequence 
of our definition of the EXSEQ semantics, according to which the execution of 
every statement produces STATE. When it is passed from one active configura- 
tion to another, we do not see it, because it is only the variables in STATE that 
matter, not the actual form of the configuration. But in the end, when the whole 
view-field becomes one passive configuration, the supercompiler outputs it as the 
value of the overall semantic function. This effect is not difficult to eliminate. 

The program is quite good in other respects. Such small things as the subtrac- 
tion of 0 from E41 can be eliminated, as they usually are, in the order of 
optimization. Note that there are ten basic configurations in the final program, 
but in order to find them the supercompiler had to consider 44 configurations as 
possibly basic, and then to discard the majority in repeated generalizations. 

To evaluate the effect of supercompilation as an optimizing procedure, we have 
also converted the graph of states into a Refal program. It runs about 40 times 
faster than before supercompilation (i.e., in the direct interpretation mode). We 
also experimented with Lisp as the object language. A semantic definition of Lisp 
was written in Refal, and a small program in Lisp was run both interpretively 
and after supercompilation. The speed-up factor from supercompilation was 
again about 40. 

Even though supercompiled programs may be quite fast, the process of super- 
compilation itself is performed in the interpretation mode, and is very slow. The 
supercompilation of program (1) took slightly less than two minutes on an 
IBM/370. For the semantic definition of programming languages in Refal to be 
useful in practice, the process of supercompilation itself must be supercompiled. 
We have kept this in mind from the start of the supercompiler project. In [22], 
one can find a more detailed discussion, as well as the Refal expressions for the 
automatic creation of compilers and compiler generators. The present super- 
compiler model is too big and too slow to be applied to itself as a whole. We 
are now developing the techniques of bootstrapping a supercompiler in parts. 
To judge such translation times as the two minutes for program (1) properly, 
one must take into account that there are two independent slow-down factors 
now in force. The first is that the current implementation of Refal is essentially 
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interpretive. We hope that a good compiler can give a speed-up by factor of 10 
to 20. The other factor is that of supercompilation; let us take 40 as the first 
approximation. We can then hope to gain three orders of magnitude, which 
should make automatic construction of compilers practicable. 

In a significant development, N. Jones et al. [lo] succeeded in applying a 
program for partial evaluation, called MIX, to itself, and producing thereby 
compilers and compiler generators for simple languages. The operation of MIX 
can be described as a very simple form of supercompilation where only one- 
function-call configurations are allowed and no generalization is made. In addi- 
tion, MIX requires a hand-made annotation of the original program, which makes 
a distinction between eliminable and residual calls; this corresponds to a super- 
compilation with the whole set of basic configurations (residual calls) supplied 
by the user. Jones has shown that the annotation dramatically reduces the 
volume of the partial evaluator, which, in fact, makes self-application possible. 
This idea should also be tried with a supercompiler. In our work at CCNY we 
have probably overemphasized the automatism of supercompilation, which blew 
up the size of the programs and caused a delay in self-application. 

On the other hand, because of the sheer volume and complexity of information 
we want to process, what we ultimately want is a completely autonomous 
supercompiler. The self-application of such a supercompiler is a hard technical 
problem. To perform sophisticated program transformation on its own, the 
supercompiler must be big enough. But the bigger it is, the more time and space 
is needed for the supercompiler to apply itself to itself. The problem is similar to 
that of constructing a flying machine: we must give it a powerful engine, but by 
trying to increase the power of the engine we also increase its weight. Even after 
the principles of a flying machine had been understood, considerable technical 
progress was required to actually start flying. This is the situation with a self- 
applicable supercompiler now. But we see no reason why it should not eventually 
“rise into the air.” 
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