
Algol W

Language Description

by
Henry Bauer

Sheldon Becker
Susan L. Graham

Edwin Satterthwaite
Richard L. Sites

June 1972

1

Contents

1 Terminology, Notation and Basic Definitions 4
1.1 Notation . 4
1.2 Definitions . 5

2 Sets of Basic Symbols and Syntactic Entities 6
2.1 Basic Symbols . 6
2.2 Syntactic entities . 7

3 Identifiers 7

4 Values and Types 9
4.1 Numbers . 10
4.2 Logical Values . 11
4.3 Bit Sequences . 11
4.4 Strings . 12
4.5 References . 12

5 Declarations 13
5.1 Simple Variable Declarations 13
5.2 Array Declarations . 14
5.3 Procedure Declarations . 16
5.4 Record Class Declarations . 19

6 Expressions 20
6.1 Variables . 22
6.2 Function Designators . 23
6.3 Arithmetic Expressions . 24
6.4 Logical Expressions . 26
6.5 Bit Expressions . 28
6.6 String Expressions . 29
6.7 Reference Expressions . 29
6.8 Conditional Expressions . 30

7 Statements 31
7.1 Blocks . 32
7.2 Assignment Statements . 33
7.3 Procedure Statements . 34
7.4 Goto Statements . 36
7.5 If Statements . 36
7.6 Assert Statements . 37

2

7.7 Case Statements . 38
7.8 Iterative Statements . 39
7.9 Standard Procedures . 41

7.9.1 The Input/Output System 41
7.9.2 Read Statements . 42
7.9.3 Write Statements . 43
7.9.4 Control Statements . 45

8 Standard Functions and Predeclared Identifiers 47
8.1 Standard Transfer Functions 47
8.2 Standard Functions of Analysis 49
8.3 Time Function . 50
8.4 Predeclared Variables . 51
8.5 Exceptional Conditions . 52

A Character Encodings 56

Index of Syntactic Entities 57

Words with Special Meanings in Algol W 59

Index 61

3

1 Terminology, Notation and Basic Defini-

tions

The Reference Language is a phrase structure language, defined by a formal
metalanguage. This metalanguage makes use of the notation and definitions
explained below. The structure of the language Algol W is determined by:

1. VT , the set of basic (or terminal) constituents of the language1,

2. VN , the set of syntactic entities (or nonterminal symbols), and

3. P , the set of syntactic rules (or productions)

1.1 Notation

A syntactic entity is denoted by its name (a sequence of letters) closed in the
brackets 〈 and 〉. A syntactic rule has the form

〈A〉 ::= x

where 〈A〉 is a member of VN , x is any possible sequence of basic constituents
and syntactic entities, simply to be called a “sequence”. In Algol W, the
set P contains the syntactic rule

〈bar〉 ::= ‘|’

implying that ‘|’ is a basic symbol of the language. Adopting the conven-
tion that all references to this basic symbol in other syntactic rules shall be
replaced by 〈bar〉 permits the unambiguous1 use subsequently of the notation

〈A〉 ::= x | y | . . . | z

is used as an abbreviation for the set of syntactic rules

〈A〉 ::= x
〈A〉 ::= y

. . .
〈A〉 ::= z

In the syntactic rule

〈empty〉 ::=

the sequence contains zero symbols, i.e. the empty sequence.

1In this LATEX document, terminal symbols are represented by characters between ‘sin-
gle quotes’ or words in boldface. The use of symbol ‘|’ in syntactic rules has become
unambiguous.

4

1.2 Definitions

1. A sequence x is said to directly produce a sequence y if and only if there
exist (possibly empty) sequences u and w, so that either (i) for some
〈A〉 in VN , x = u〈A〉w, y = uvw, and 〈A〉 ::= v is a rule in P ; or (ii)
x = uw, y = uvw and v is a “comment” (see below).

2. A sequence x is said to produce a sequence y if and only if there exists
an ordered set of sequences s0, s1, ..., sn, so that x = s0, sn = y, and
si−1 directly produces si for all i = 1, ..., n.

3. A sequence x is said to be an Algol W program if and only if its
constituents are members of the set VT , and x can be produced from
the syntactic entity 〈program〉.

The sets VT and VN − {‘|’} are defined through enumeration of their
members given throughout the sequel of the Report. To provide explana-
tions for the meaning of Algol W programs, the letter sequences denoting
syntactic entities have been chosen to be English words describing approxi-
mately the nature of that syntactic entity or construct. Where words which
have appeared in this manner are used elsewhere in the text, they refer to
the corresponding syntactic definition. Along with these letter sequences the
symbol τ may occur. It is understood that this symbol must be replaced by
any one of a finite set of English words (or word pairs). Unless otherwise
specified in the particular section, all occurrences of the symbol τ within one
syntactic rule must be replaced consistently, and the replacing words are

integer logical
real bit
long real string
complex reference
long complex

For example, the production

〈τ term〉 ::= 〈τ factor〉

corresponds to

〈integer term〉 ::= 〈integer factor〉
〈real term〉 ::= 〈real factor〉

〈long real term〉 ::= 〈long real factor〉
〈complex term〉 ::= 〈complex factor〉

〈long complex term〉 ::= 〈long complex factor〉

5

The production

〈τ0 primary〉 ::= long 〈τ1 primary〉

corresponds to

〈long real primary〉 ::= long 〈real primary〉
〈long integer primary〉 ::= long 〈integer primary〉
〈long complex primary〉 ::= long 〈complex primary〉

It is recognized that typographical entities exist of lower order than basic
symbols, called characters. The accepted characters are those of the IBM
System 360 EBCDIC code.

The symbol comment followed by any sequence of characters not con-
taining semicolons, followed by a semicolon, is called a comment. A comment
has no effect on the meaning of a program, and is ignored during execution
of the program. An identifier (cf. 3) immediately following the basic symbol
end is also regarded as a comment.

The execution of a program can be considered as a sequence of units of
action. The sequence of these units of action is defined as the evaluation
of expressions and the execution of statements as denoted by the program.
In the definition of the implemented language the evaluation or execution of
certain constructs is either (1) defined by System 360 operations, e.g., real
arithmetic, or (2) left undefined, e.g., the order of evaluation of arithmetic
primaries in expressions, or (3) said to be not valid or not defined .

2 Sets of Basic Symbols and Syntactic Enti-

ties

2.1 Basic Symbols

‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ | ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’ |
‘O’ | ‘P’ | ‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’ | ‘_’ |

‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ |

true | false | ‘"’ | null | ‘#’ | ‘’’ |
integer | real | complex | logical | bits | string | reference |
long real | long complex | array | procedure | record |
‘,’ | ‘;’ | ‘:’ | ‘.’ | ‘(’ | ‘)’ | begin | end | if | then | else | case
| of | ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘**’ | div | rem | shr | shl | is | abs |

6

long | short | and | or | ‘¬’ | 〈bar〉 | ‘<=’ | ‘¬=’ | ‘<’ | ‘=’ | ‘>’ |
‘>=’ | ‘::’ | ‘:=’ | goto | go to | for | step | until | do | while |
comment | value | result | assert | algol | fortran

All bold lowercase words, which we call “reserved words”, are repre-
sented by the same words in capital letters in an actual program, with no
intervening blanks.

Adjacent reserved words, identifiers (cf. 3) and numbers must include no
blanks and must be separated by at least one blank space. Otherwise blanks
have no meaning and can be used freely to improve the readability of the
program.

2.2 Syntactic entities

(See the Syntactic Entities index on page 56.)

3 Identifiers

〈identifier〉 ::= 〈letter〉
| 〈identifier〉 〈letter〉
| 〈identifier〉 〈digit〉
| 〈identifier〉 ‘_’

〈τ variable identifier〉 ::= 〈identifier〉

〈τ array identifier〉 ::= 〈identifier〉

〈procedure identifier〉 ::= 〈identifier〉

〈τ function identifier〉 ::= 〈identifier〉

〈record class identifier〉 ::= 〈identifier〉

〈τ field identifier〉 ::= 〈identifier〉

〈label identifier〉 ::= 〈identifier〉

〈control identifier〉 ::= 〈identifier〉

〈letter〉 ::= ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’
| ‘H’ | ‘I’ | ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’
| ‘O’ | ‘P’ | ‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘U’
| ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’

〈digit〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

〈identifier list〉 ::= 〈identifier〉
| 〈identifier list〉 ‘,’ 〈identifier〉

7

3.0.1. Semantics

Variables, arrays, procedures, record classes and record fields are said to be
quantities. Identifiers serve to identify quantities, or they stand as labels,
formal parameters or Control identifiers. Identifiers have no inherent mean-
ing, and can be chosen freely in the reference language. In an actual program
a reserved word cannot be used as an identifier.

Every identifier used in a program must be defined. This is achieved
through

(a) declaration (cf. Section 5), if the identifier identifies a quantity. It is
then said to denote that quantity and to be a τ variable identifier, τ
array identifier, τ procedure identifier, τ function identifier, record class
identifier or τ field identifier, where the symbol τ stands for the appro-
priate word reflecting the type of the declared quantity;

(b) a label definition (cf. 7.1), if the identifier stands as a label. It is then
said to be a label identifier;

(c) its occurrence in a formal parameter list (cf. 5.3). It is then said to be a
formal parameter;

(d) its occurrence following the symbol for in a for clause (cf. 7.8). It is then
said to be a control identifier

(e) its implicit declaration in the language. Standard procedures, standard
functions, and predefined variables (cf. 7.9 and 8) may be considered to
be declared in a block containing the program.

The recognition of the definition of a given identifier is determined by the
following rules:

Step 1. If the identifier is defined by a declaration of a quantity or by its
standing as a label within the smallest block (cf. 7.1) embracing a
given occurrence of that identifier, then it denotes that quantity or
label. A statement following a procedure heading (cf. 5.3) or a for

clause (cf. 7.8) is considered to be a block.

Step 2. Otherwise, if that block is a procedure body and if the given identi-
fier is identical with a formal parameter in the associated procedure
heading, then it stands as that formal parameter.

8

Step 3. Otherwise, if that block is preceded by a for clause and the identifier
is identical to the control identifier of that for clause, then it stands as
that control identifier. Otherwise, these rules are applied considering
the smallest block embracing the block which has previously been
considered.

If either step 1 or step 2 could lead to more than one definition, then the
identification is undefined.

The scope of a quantity, a label, a formal parameter, or a control identifier
is the set of statements in which occurrences of an identifier may refer by
the above rules to the definition of that quantity, label, formal parameter or
control identifier.

3.0.2. Examples

I

PERSON

ELDERSIBLING

X15, X20, X25

NEW_PAGE

4 Values and Types

Constants and variables (cf. 6.1) are said to possess a value. The value of a
constant is determined by the denotation of the constant. In the language,
all constants (except references) have a reference denotation (cf. 4.1 4.4).
The value of a variable is the one most recently assigned to that variable. A
value is (recursively) defined as either a simple value or a structured value
(an ordered set of one or more values). Every value is said to be of a certain
type.

The following types of simple values are distinguished:

9

integer the value is a 32 bit integer,
real the value is a 32 bit floating point number,
long real the value is a 64 bit floating point number,
complex the value is a complex number composed of two

numbers of type real,
long complex the value is a complex number composed of two

long real numbers,
logical the value is a logical value,
bits the value is a linear sequence of 32 bits,
string the value is a linear sequence of at most 256 char-

acters,
reference the value is a reference to a record.

The following types of structured values are distinguished:

array the value is an ordered set of values, all of identical
simple type,

record the value is an ordered set of simple values.

A procedure may yield a value, in which case it is said to be a function
procedure, or it may not yield a value, in which case it is called a proper
procedure. The value of a function procedure is defined as the value which
results from the execution of the procedure body (cf. 6.2).

Subsequently, the reference denotation of constants is defined. The ref-
erence denotation of any constant consists of a sequence of characters. This,
however, does not imply that the value of the denoted constant is a sequence
of characters, nor that it has the properties of a sequence of characters, ex-
cept, of course, in the case of strings.

4.1 Numbers

4.1.1. Syntax

〈long complex constant〉 ::= 〈complex constant〉 ‘L’

〈complex constant〉 ::= 〈imaginary constant〉

〈imaginary constant〉 ::= 〈real constant〉 ‘I’
| 〈integer constant〉 ‘I’

〈long real constant〉 ::= 〈real constant〉 ‘L’
| 〈integer constant〉 ‘L’

〈real constant〉 ::= 〈unscaled real〉
| 〈unscaled real〉 〈scale factor〉

10

| 〈integer constant〉 〈scale factor〉
| 〈scale factor〉

〈unscaled real〉 ::= 〈integer constant〉 ‘.’ 〈integer constant〉
| ‘.’ 〈integer constant〉
| 〈integer constant〉 ‘.’

〈scale factor〉 ::= ‘’’ 〈integer constant〉
| ‘’’ 〈sign〉 〈integer constant〉

〈integer constant〉 ::= 〈digit〉
| 〈integer constant〉 〈digit〉

〈sign〉 ::= ‘+’ | ‘-’

(Note: a long complex constant may have the I and L in either order in
a program, but they must be in the order IL on data cards.)

4.1.2. Semantics

Numbers are interpreted according to the conventional decimal notation.
A scale factor denotes an integral power of 10 which is multiplied by the
unscaled real or integer number preceding it. Each number has a uniquely
defined type. (Note that all 〈τ constant〉s are unsigned.)

4.1.3. Examples

1 05 11

0100 1’3 0.671

3.1416 6.02486’+23 1IL

2.718281828459045235360287L 2.3’-6

4.2 Logical Values

4.2.1. Syntax

〈logical constant〉 ::= true | false

4.3 Bit Sequences

4.3.1. Syntax

〈bit constant〉 ::= ‘#’ 〈hex digit〉
| 〈bit constant〉 〈hex digit〉

〈hex digit〉 ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’
| ‘8’ | ‘9’ | ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’

11

Note that ‘A’ | . . . | ‘F’ corresponds to 1010|...|1510.

4.3.2. Semantics

The number of bits in a bit sequence is 32, or 8 hex digits. The bit sequence
is always represented by a 32 bit word with the specified bit sequence right
justified in the word and zeros filled in on the left.

4.3.3. Examples

#4F = 0000 0000 0000 0000 0000 0000 0100 1111
#9 = 0000 0000 0000 0000 0000 0000 0000 1001

4.4 Strings

4.4.1. Syntax

〈string constant〉 ::= 〈string〉

〈string〉 ::= ‘"’ 〈open string〉 ‘"’

〈open string〉 ::= 〈character〉 | 〈open string〉 〈character〉

4.4.2. Semantics

Strings consist of any sequence of (a t least one and at most at most 256)
characters accepted by the System 360 enclosed by ", the string quote. If the
string quote appears in the sequence of characters it must be immediately
followed by a second string quote which is then ignored. The number of
characters in a string is said to be the length of the string. The characters
accepted by the IBM system 360 are listed in Appendix I.

4.4.3. Example

"JOHN"

"""" This is the string of length 1 consisting of the string quote.

4.5 References

4.5.1. Syntax

〈reference constant〉 ::= null

12

4.5.2. Semantics

The reference value null fails to designate a record; if a reference expres-
sion occurring in a field designator (cf. 6.1) has this value, then the field
designator is undefined.

5 Declarations

Declarations serve to associate identifiers with the quantities used in the
program, to attribute certain permanent properties to these quantities (i.e:.
type, structure), and to determine their Scope. The quantities declared by
declarations are simple variables, arrays, procedures and record classes.

Upon exit from a block, all quantities declared or defined within that
block lose their value and significance (cf. 7.1 and 7.4).

5.0.3. Syntax

〈declaration〉 ::= 〈simple variable declaration〉
| 〈τ array declaration〉
| 〈procedure declaration〉
| 〈record class declaration〉

5.1 Simple Variable Declarations

5.1.1. Syntax

〈simple variable declaration〉 ::= 〈simple type〉 〈identifier list〉

〈simple type〉 ::= integer | real | long real | complex
| long complex | logical |
| bits | bits ‘(’ ‘32’ ‘)’
| string | string ‘(’ 〈integer constant〉 ‘)’
| reference ‘(’ 〈record class identifier list〉 ‘)’

〈record class identifier list〉 ::= 〈record class identifier〉
| 〈record class identifier list〉‘,’ 〈record class identifier〉

5.1.2. Semantics

Each identifier of the identifier list is associated with a variable which is
declared to be of the indicated type. A variable is called a simple variable, if
its value is simple (cf. Section 5). If a variable is declared to be of a certain
type, then this implies that only values which are assignment compatible

13

with this type (cf. 7.2) can be assigned to it. It is understood that the value
of a variable is equal to the value of the expression most recently assigned to
it.

A variable of type bits is always of length 32 whether or not the declara-
tion specification is included.

A variable of type string has a length equal to the unsigned integer in
the declaration specification. If the simple type is given only as string, the
length of the variable is 16 characters.

A variable of type reference may refer only to records of the record classes
whose identifiers appear in the record class identifier list of the reference
declaration specification.

5.1.3. Example

integer I, J, K, M, N

real X, Y, Z

long complex C

logical L

bits G, H

string (10) S, T

reference (PERSON) JACK, JILL

5.2 Array Declarations

5.2.1. Syntax

〈τ array declaration〉 ::= 〈simple type〉 array 〈identifier list〉
‘(’ 〈bound pair list〉 ‘)’

〈bound pair list〉 ::= 〈bound pair〉
| 〈bound pair list〉 ‘,’ 〈bound pair〉

〈bound pair〉 ::= 〈lower bound〉 ‘::’ 〈upper bound〉

〈lower bound〉 ::= 〈integer expression〉

〈upper bound〉 ::= 〈integer expression〉

5.2.2. Semantics

Each identifier of the identifier list of an array declaration is associated with
a variable which is declared to be of type array. A variable of type array
is an ordered set of variables whose type is the simple type preceding the
symbol array. The dimension of the array is the number of entries in the
bound pair list.

14

Every element of an array is identified by a list of indices. The indices
are the integers between and including the values of the lower bound and the
upper bound. Every expression in the bound pair list is evaluated exactly
once upon entry to the block in which the declaration occurs. The bound
pair expressions can depend only on variables and procedures global to the
block in which the declaration occurs. In order to be valid, for every bound
pair, the value of the upper bound must not be less than the value of the
lower bound.

5.2.3. Example

integer array H(1::100)

real array A, B(1::M, 1::N)

string (12) array STREET, TOWN, CITY (J::K + 1)

15

5.3 Procedure Declarations

5.3.1. Syntax

〈procedure declaration〉 ::= 〈proper procedure declaration〉
| 〈τ function procedure declaration〉

〈proper procedure declaration〉 ::= procedure 〈procedure heading〉 ‘;’
〈proper procedure body〉

〈τ function procedure declaration〉 ::= 〈simple type〉
procedure 〈procedure heading〉 ‘;’
〈τ function procedure body〉

〈proper procedure body〉 ::= 〈statement〉
| 〈external reference〉

〈τ function procedure body〉 ::= 〈τ expression〉
| 〈block body〉 〈τ expression〉 end
| 〈external reference〉

〈procedure heading〉 ::= 〈identifier〉
| 〈identifier〉

‘(’ 〈formal parameter list〉 ‘)’

〈formal parameter list〉 ::= 〈formal parameter segment〉
| 〈formal parameter list〉 ‘;’

〈formal parameter segment〉

〈formal parameter segment〉 ::= 〈formal type〉 〈identifier list〉
| 〈formal array parameter〉

〈formal type〉 ::= 〈simple type〉
| 〈simple type〉 value
| 〈simple type〉 result
| 〈simple type〉 value result
| 〈simple type〉 procedure
| procedure

〈formal array parameter〉 ::= 〈simple type〉 array 〈identifier list〉
‘(’ 〈dimension specification〉 ‘)’

〈dimension specification〉 ::= ‘*’
| 〈dimension specification〉 ‘,’ ‘*’

〈external reference〉 ::= fortran 〈string constant〉
| algol 〈string constant〉

16

5.3.2. Semantics

A procedure declaration associates the procedure body with the identifier
immediately following the symbol procedure. The principal part of the
procedure declaration is the procedure body. Other parts of the block in
whose heading the procedure is declared can then cause this procedure body
to be executed or evaluated. A proper procedure is activated by a procedure
statement (cf. 7.3), a function procedure by a function designator (cf. 6.2).
Associated with the procedure body is a heading containing the procedure
identifier and possibly a list of formal parameters.

5.3.2.1 Type specification of formal parameters. All formal param-
eters of a formal parameter segment are of the same indicated type. The type
must be such that the replacement of the formal parameter by the actual pa-
rameter of this specified type leads to correct Algol W expressions and
statements (cf. 7.3).

5.3.2.2 The effect of the symbols value and result appearing in a formal
type is explained by the following rule, which is applied to the procedure body
before the procedure is invoked:

1. The procedure body is enclosed by the symbols begin and end;

2. For every formal parameter whose formal type contains the symbol
value or result (or both),

(a) a declaration followed by a semicolon is inserted after the first
begin of the procedure body, with a simple type as indicated in
the formal type, and with an identifier different from any identifier
valid at the place of the declaration.

(b) throughout the procedure body, every occurrence of the formal
parameter identifier is replaced by the identifier defined in step
2(a);

3. If the formal type contains the symbol value, an assignment statement
(cf. 7.2) followed by a semicolon is inserted after the declarations in
the outermost block of the procedure body. Its left part contains the
identifier defined in step 2a, and its expression consists of the formal
parameter identifier. The symbol value is then deleted;

17

4. If the formal type contains the symbol result, an assignment statement
preceded by a semicolon is inserted before the symbol end which termi-
nates the procedure body. Its left part contains the formal parameter
identifier, and its expression consists of the identifier defined in step
2a. The symbol result is then deleted.

5.3.2.3 Specification of array dimensions. The number of *’s appear-
ing in the formal array specification is the dimension of the array parameter.

5.3.2.4 External references. Use of an external reference as a proce-
dure body indicates that the actual procedure body is specified by the en-
vironment in which the program is to be executed. The information in the
external reference is used to locate and interpret that procedure body. The
details of such use depend on the specific environment.

5.3.3. Examples

procedure INCREMENT; X := X+1

real procedure MAX (real value X, Y);

if X < Y then Y else X

procedure COPY (real array U, V (*,*); integer value A, B);

for I := 1 until A do

for J := 1 until B do U(I,J) := V(I,J)

real procedure HORNER (real array A (*); integer value N;

real value X);

begin real S; S := 0;

for I := 0 until N do S := S * X + A(I);

S

end

reference (PERSON) procedure YOUNGESTUNCLE (reference (PERSON) R);

begin reference (PERSON) P, M;

P := YOUNGESTOFFPRING (FATHER (FATHER (R)));

while (P ¬= null) and (¬ MALE (P)) or (P = FATHER(R)) do

P := ELDERSIBLING (P);

M := YOUNGESTOFFSPRING (MOTHER (MOTHER (R)));

while (M ¬= null) and (¬ MALE (M)) do

M := ELDERSIBLING (M);

if P = null then M else

18

if M = null then P else

if AGE(P) < AGE(M) then P else M

end

procedure PLOTSUBROUTINE (integer value I); fortran "PLOTSUB"

5.4 Record Class Declarations

5.4.1. Syntax

〈record class declaration〉 ::= record 〈identifier〉 ‘(’ 〈field list〉 ‘)’

〈field list〉 ::= 〈simple variable declaration〉
| 〈field list〉 ‘;’ 〈simple variable declaration〉

5.4.2. Semantics

A record class declaration serves to define the structural properties of records
belonging to the class. The principal constituent of a record-class decla-
ration is a sequence of simple variable declarations which define the fields
and their simple types for the records of this class and associate identifiers
with the individual fields. A record class identifier can be used in a record
designator (cf. 6.3) to construct a new record of the given class.

5.4.3. Examples

record NODE (reference (NODE) LEFT, RIGHT)

record PERSON (

string NAME;

integer AGE;

logical MALE;

reference (PERSON) FATHER, MOTHER, YOUNGESTOFFSPRING, ELDERSIBLING

);

19

6 Expressions

Expressions are rules which specify how new values are computed from ex-
isting ones. These new values are obtained by performing the operations
indicated by the operators on the values of the operands. The operands are
either constants, variables or function designators, or other expressions, en-
closed by parentheses if necessary. The evaluation of operands other than
constants may involve smaller units of action such as the evaluation of other
expressions or the execution of statements. The value of an expression be-
tween parentheses is obtained by evaluating that expression. If an operator
has two operands, then these operands may be evaluated in any order with
the exception of the logical operators discussed in 6.4.2.1.

Expressions are distinguished by a type and precedence level, the former
depending on the types of the operands and the latter resulting from the
precedence hierarchy imposed upon operators in the syntactic rules which
follow. The syntactic entities naming different kinds of expression in these
rules display these attributes, the word “expression” prefixed by the a type
and, usually, postfixed by an integer indicating the precedence level. (higher
precedence is implied by increasing magnitude of this integer.) The operators
and their precedence levels are:

Level Operators
1 or

2 and

3 ¬

4 <, <=, =, ¬=, >=, >, is

5 +, -
6 *, /, div, rem

7 shl, shr, **
8 long, short, abs

When the types allow an operator at level i to be applied to operands, the
resulting expression, which which belongs to the syntactic class 〈τ expression i〉
has the intuitive meaning given in the second column of the following table.

20

Syntactic Entity Meaning Definitions
〈τ expression 1 〉 disjunction 6, 6.4, 6.5
〈τ expression 2 〉 conjunction 6, 6.4, 6.5
〈τ expression 3 〉 negation 6, 6.4, 6.5
〈τ expression 4 〉 relation 6, 6.4
〈τ expression 5 〉 sum 6, 6.3
〈τ expression 6 〉 term 6, 6.3
〈τ expression 7 〉 factor 6, 6.3, 6.5
〈τ expression 8 〉 primary 6, 6.3, 6.6

The third column of the table indicates sections where definitions of these
syntactic entities occur.

Throughout section 6 and its subsections the symbol τ has to be replaced
consistently as described in Section 1, and where the triplets τ0, τ1, τ2 have
to be either all three replaced by the same one of the words

logical
bit
string
reference

or (subject to specification to the contrary) in accordance with the following
“triplet rules”.

1. Given the qualities (integer, real or complex) of τ1 and τ2, the corre-
sponding quality of τ0 is given in the table

H
H

H
H

H
H

τ1

τ2 integer real complex

integer integer real complex
real real real complex
complex complex complex complex

2. τ0 has the quality long either if both τ1 and τ2 have that quality, or if
one has the quality long and the other is integer.

Syntax

〈τ expression〉 ::= 〈τ expression 1 〉 | 〈conditional τ expression〉

〈τ expression 1 〉 ::= 〈τ expression 2 〉

〈τ expression 2 〉 ::= 〈τ expression 3 〉

21

〈τ expression 3 〉 ::= 〈τ expression 4 〉

〈τ expression 4 〉 ::= 〈τ expression 5 〉

〈τ expression 5 〉 ::= 〈τ expression 6 〉

〈τ expression 6 〉 ::= 〈τ expression 7 〉

〈τ expression 7 〉 ::= 〈τ expression 8 〉

〈τ expression 8 〉 ::= 〈τ constant〉 | ‘(’ 〈τ expression〉 ‘)’ | 〈τ block expression〉

〈τ block expression〉 ::= 〈block body〉 〈τ expression〉 end

Semantics

There are 8 levels of precedence; an expression at one level of precedence
is a valid expression at a lower level of precedence.

A block expression introduces a new level of nomenclature and specifies
the execution of statements in the block body as described for blocks (cf.7.1).
After execution of of the block body, the final expression is evaluated and
the value of that expression becomes the value of the entire block expression.

6.1 Variables

6.1.1. Syntax

〈simple τ variable〉 ::= 〈τ variable identifier〉
| 〈τ field designator〉
| 〈τ array designator〉

〈τ variable〉 ::= 〈simple τ variable〉

〈string variable〉 ::= 〈substring designator〉

〈τ field designator〉 ::= 〈τ field identifier〉 ‘(’ 〈reference expression〉 ‘)’

〈τ array designator〉 ::= 〈τ array identifier〉 ‘(’ 〈subscript list〉 ‘)’

〈subscript list〉 ::= 〈subscript〉
| 〈subscript list〉 ‘,’ 〈subscript〉

〈subscript〉 ::= 〈integer expression〉

6.1.2. Semantics

An array designator denotes the variable whose indices are the current values
of the expressions in the subscript list. The value of each subscript must lie
within the declared bounds for that subscript position.

22

A field designator designates a field in the record referred to by its ref-
erence expression. The simple type of the field designator is defined by the
declaration of that field identifier in the record class designated by the refer-
ence expression of the field designator (cf.5.4).

6.1.3. Examples

X A(I) M(I+J, I-J)

FATHER(JACK) MOTHER(FATHER(JILL))

6.2 Function Designators

6.2.1. Syntax

〈τ function designator〉 ::= 〈τ function identifier〉
| 〈τ function identifier〉

‘(’ 〈actual parameter list〉 ‘)’

6.2.2. Semantics

A function designator defines a value which can be obtained by a process
performed in the following steps:

Step 1. A copy is made of the body of the function procedure whose pro-
cedure identifier is given by the function designator and of the actual
parameters of the latter.

Steps 2, 3, 4. As specified in 7.3.

Step 5. The copy of the function procedure body, modified as indicated in
steps 2–4, is executed. Execution of the expression which constitutes
or is part of the modified procedure body consists of evaluation of
that expression, and the resulting value is the value of the function
designator. The simple type of the function designator is the simple
type in the corresponding function procedure declaration.

6.2.3. Examples

MAX (X ** 2, Y ** 2)

SUM (I, 100, H(1))

SUM (I, M, SUM (J, N, A(I,J)))

YOUNGESTUNCLE (JILL)

SUM (I, 10, X(1) * Y(1))

HORNER (X, 10, 2.7)

23

6.3 Arithmetic Expressions

6.3.1. Syntax

〈τ3 expression 5 〉 ::= ‘+’ 〈τ3 expression 6 〉
| ‘-’ 〈τ3 expression 6 〉

〈τ0 expression 5 〉 ::= 〈τ1 expression 5 〉 ‘+’ 〈τ2 expression 6 〉
| 〈τ1 expression 5 〉 ‘-’ 〈τ2 expression 6 〉

〈τ0 expression 6 〉 ::= 〈τ1 expression 6 〉 ‘*’ 〈τ2 expression 7 〉
| 〈τ1 expression 6 〉 ‘/’ 〈τ2 expression 7 〉

〈integer expression 6 〉 ::= 〈integer expression 6 〉 div 〈integer expression 7 〉
| 〈integer expression 6 〉 rem 〈integer expression 7 〉

〈τ4 expression 7 〉 ::= 〈τ5 expression 7 〉 ‘**’ 〈integer expression 8 〉

〈τ4 expression 8 〉 ::= abs 〈τ5 expression 8 〉
| long 〈τ5 expression 8 〉
| short 〈τ5 expression 8 〉

〈integer expression 8 〉 ::= 〈control identifier〉

6.3.2. Semantics

An arithmetic expression is a rule for computing a number. According to
its simple type it is called an integer expression, real expression, long real
expression, complex expression, or long complex expression.

6.3.2.1 The operators +, -, *, and / have the conventional meanings of
addition, subtraction, multiplication and division.

For the operator *, the second “triplet rule” is modified so that τ0 has
the quality long unless both τ1 and τ2 are integer.

For the operator /, the “triplet rules” except when both τ1 τ2 are integer,
then τ0 is long real.

6.3.2.2 The operator - standing as the first symbol of a expression at
priorty level 5 denotes the monadic operation of sign inversion. The type of
the result is the type of the operand. The operator + standing as the first
symbol of a simple expression denotes the monadic operation of identity.

In the relevant syntactic rules of 6.3, every occurrence of the symbol τ3

must be systematically replaced by one of the following words (or word pairs):

integer
real

24

long real
complex
long complex

6.3.2.3 The operator div is mathematically defined (for B 6= 0) as

A div B = SGN(A × B) × D(abs A, abs B)

(cf. 6.3.2.5) A and B both must be integer expressions.
For the purpose of the definition above, SGN and D mean

integer procedure SGN (integer value A);

if A < 0 then -1 else 1;

integer procedure D (integer value A, B);

if A < B then 0 else D(A - B, B) + 1

6.3.2.4 The operator rem (remainder) is mathematically defined as

A rem B = A − (A div B) × B

6.3.2.5 The operator ** denotes exponentiation of the first operand to
the power of the second operand. In the relevant syntactic rule of 6.3. the
symbols τ4, τ5 are to be replaced by any of the following combinations of
words:

τ4 τ5

long real integer
long real real
long complex complex

τ4 has the quality long whether or not τ5 has.

6.3.2.6 The monadic operator abs yields the absolute value or modulus
of the operand. In the relevant syntactic rule of 6.3. the symbols τ4 and τ5

have to be replaced by any of the following combinations of words:

τ4 τ5

integer integer
real real
real complex

If τ5 has the quality long then so does τ5.

25

6.3.2.7 Precision of arithmetic. If the result of an arithmetic opera-
tion is of simple type real, complex, long real, or long complex then it value
is defined by System/360 arithmetic and is the mathematically understood
result of the operation performed on operands which may deviate from actual
operands.

In the relevant syntactic rules of 6.3 the symbols τ4, τ5 must be replaced
by the following combinations of words (or word pairs):

Operator long

τ4 τ5

long real real
long real integer
long complex complex

Operator short

τ4 τ5

real long real
complex long complex

6.3.3. Examples

C + A(1) * B(1)

EXP(-X/(2 * SIGMA)) / SQRT (2 * SIGMA)

6.4 Logical Expressions

6.4.1. Syntax

In the following rules for 〈relation〉 the symbols τ6 and τ7 must either be
identically replaced by any one of the following words:

bit
string
reference

or by any of the words from:

complex
long complex
real
long real
integer

26

and the symbols τ8 and τ9 must be identically replaced by string or must be
replaced by any of real, long real, integer.

〈logical expression 1 〉 ::= 〈logical expression 1 〉
| 〈logical expression 1 〉 or 〈logical expression 2 〉

〈logical expression 2 〉 ::= 〈logical expression 2 〉
| 〈logical expression 2 〉 and 〈logical expression 3 〉

〈logical expression 3 〉 ::= ‘¬’ 〈logical expression 4 〉

〈relation〉 ::= 〈τ6 expression 5 〉 〈equality operator〉 〈τ7 expression 5 〉
| 〈τ8 expression 5 〉 〈inequality operator〉 〈τ9 expression 5 〉
| 〈reference expression 5 〉 is 〈record class identifier〉

〈equality operator〉 ::= ‘=’ | ‘¬=’

〈inequality operator〉 ::= ‘<’ | ‘<=’ | ‘>=’ | ‘>’

6.4.2. Semantics

A logical expression is a rule for computing a logical value.

6.4.2.1 The relational operators represent algebraic ordering for arith-
metic arguments and EBCDIC ordering for string arguments. If two strings
of unequal length are compared, the shorter string is considered to be ex-
tended to the length of the longer (for comparision only) by appending blanks
to the right. The relational operators yield the logical value true if the re-
lation is satisfied for the values of the two operands; false otherwise. Two
references are equal if and only if they are both null or both refer to the
same record. The operator is yields the logical value true if the reference
expression designates a record of the indicated record class; false otherwise.
The reference value null fails to designate a record of any record class.

6.4.2.2 The operators ¬ (not), and, and or, operating on logical values,
are defined by the following equivalences:

¬ X if X then false else true

X and Y if X then Y else false

X or Y if X then true else Y

27

6.4.3. Examples

P or Q

(X < Y) and (Y < Z)

YOUNGESTOFFSPRING (JACK) 1 = null

FATHER (JILL) is PERSON

6.5 Bit Expressions

6.5.1. Syntax

〈bit expression 1 〉 ::= 〈bit expression 1 〉 or 〈bit expression 2 〉

〈bit expression 2 〉 ::= 〈bit expression 1 〉 and 〈bit expression 3 〉

〈bit expression 3 〉 ::= ‘¬’ 〈bit expression 4 〉

〈bit expression 7 〉 ::= 〈bit expression 7 〉 shl 〈integer expression 8 〉
| 〈bit expression 7 〉 shr 〈integer expression 8 〉

6.5.2. Semantics

A bit expression is a rule for computing a bit sequence.
The operators and, or, and ¬ produce a result of type bits, every bit

being dependent on the corresponding bit(s) in the operand(s) as follows:

X Y ¬X X and Y X or Y

0 0 1 0 0
0 1 1 0 1
1 0 0 0 1
1 1 0 1 1

The operators shl and shr denote the shifting operation to the left and
to the right respectively by the number of bit positions indicated by the
absolute value of the integer primary. Vacated bit positions to the right or
left respectively are assigned the bit value 0.

6.5.3. Examples

G and H or #38

G and ¬(H or G) shr 8

28

6.6 String Expressions

6.6.1. Syntax

〈substring designator〉 ::= 〈string variable〉
‘(’ 〈integer expression〉 〈bar〉 〈integer constant〉
‘)’

6.6.2. Semantics

A string expression is a rule for computing a string (sequence of characters).

6.6.2.1 A substring designator denotes a sequence of characters of the
string designated by the string variable. The integer expression preceding
the 〈bar〉 selects the starting character of the sequence. The value of the
expression indicates the position in the string variable. The value must be
greater than or equal to 0 and less than the declared length of the string
variable. The first character of the string has position 0. The integer number
following the 〈bar〉 indicates the length of the selected sequence and is the
length of the string expression. The sum of the integer expression and the
integer number must be less than or equal to the declared length of the string
variable.

6.6.3. Examples

string (10) S;

S(4|3)

S(I+J|1)

string (10) array T (1::M,2::N);

T(4,6)(3|5)

6.7 Reference Expressions

6.7.1. Syntax

〈reference expression 8 〉 ::= 〈record designator〉

〈record designator〉 ::= 〈record class identifier〉
| 〈record class identifier〉 ‘(’ 〈expression list〉 ‘)’

〈expression list〉 ::= 〈empty〉
| 〈τ expression〉
| 〈expression list〉 ‘,’ 〈τ expression〉

29

6.7.2. Semantics

A reference expression is a rule for computing a reference to a record.
The value of a record designator is the reference to a newly created record

belonging to the designated record class. If the record designator contains
an expression list, then the length of the list must equal the number of fields
specified in the class declaration. Values of nonempty expressions in the
expression list are assigned to the corresponding fields of the new record,
and the simple types of the expressions must be assignment compatible with
the simple types of the record fields (cf.7.2).

6.7.3. Example

PERSON ("CAROL", 0, false, JACK, JILL, null, YOUNGESTOFFSPRING(JACK))

NODE (, null)

6.8 Conditional Expressions

6.8.1. Syntax

〈conditional τ expression〉 ::= 〈case clause〉 ‘(’ 〈τ expression list〉 ‘)’

〈conditional τ0 expression〉 ::= 〈if clause〉 〈τ1 expression〉 else 〈τ2 expression〉

〈τ expression list〉 ::= 〈τ expression〉

〈τ0 expression list〉 ::= 〈τ1 expression list〉 ‘,’ 〈τ2 expression〉

〈if clause〉 ::= if 〈logical expression〉 then

〈case clause〉 ::= case 〈integer expression〉 of

6.8.2. Semantics

The construction

〈if clause〉 〈τ1 expression〉 else 〈τ2 expression〉

causes the selection and evaluation of an expression on the basis of the current
value of the logical expression contained in the if clause. If this value is true,
the expression following the if clause is selected; if the value is false, the
expression following else is selected. If τ1 and τ2 are type string, the length
of the resulting expression is the maximum of the lengths of the component
expressions; if necessary, blanks are appended on the right right of the shorter
string. The construction

〈case clause〉 ‘(’ 〈τ expression list〉 ‘)’

30

causes the selection of the expression whose ordinal number in the expression
list is equal to the current value of the integer expression contained in the case

clause. In order that the case expression be defined, the current value of this
expression must be the ordinal number of some expression in the expression
list. type If τ is type string, the length of the resulting expression is the
maximum of the lengths of the stings in the expression list. If necessary, the
length of any shorter element is increased by appending blanks on the right.

6.8.3. Examples

X -1 A*B COLUMN rem 5 (X+Y)*3 long abs BALANCE

if X=3 then Y+37 else Z*2.1

case I of (3.14, 2.78, 448.9)

case DECODE(C) - 128 of ("A", "B", "C", "D", "E", "F")

7 Statements

A statement denotes a unit of action. By the execution of a statement is
meant the performance of this unit of action, which may consist of smaller
units of action such as the evaluation of expressions or the execution of other
statements.

7.0.4. Syntax

〈program〉 ::= 〈statement〉 ‘.’
| 〈proper procedure declaration〉 ‘.’
| 〈τ function procedure declaration〉 ‘.’

〈statement〉 ::= 〈simple statement〉
| 〈iterative statement〉
| 〈if statement〉
| 〈case statement〉

〈simple statement〉 ::= 〈block〉
| 〈τ assignment statement〉
| 〈empty〉
| 〈procedure statement〉
| 〈goto statement〉
| 〈standard procedure statement〉
| 〈assert statement〉
| 〈empty〉

31

Programs which are procedure declarations cannot be executed directly,
but the corrsponding procedure bodies can form part of the environment in
which other Algol W programs are executed (cf.5.3).

7.1 Blocks

7.1.1. Syntax

〈block〉 ::= 〈block body〉 〈statement〉 end

〈block body〉 ::= 〈block head〉
| 〈block body〉 〈statement〉 ‘;’
| 〈block body〉 〈label definition〉

〈block head〉 ::= begin
| 〈block head〉 〈declaration〉 ‘;’

〈label definition〉 ::= 〈identifier〉 ‘:’

7.1.2. Semantics

Every block introduces a new level of nomenclature. This is realized by
execution of the block in the following steps:

Step 1. If an identifier, say A, defined in the block head or in a label def-
inition of the block body is already defined at the place from which
the block is entered, then every occurrence of that identifier, A, within
the block except for occurrence in array bound expressions is system-
atically replaced by another identifier, say A′, which is defined neither
within the block nor at the place from which the block is entered.

Step 2. If the declarations of the block contain array bound expressions,
then these expressions are evaluated.

Step 3. Execution of the statements contained in the block body begins
with the execution of the first statement following the block head.

After execution of the last statement of the block body (unless it is a goto
statement) a block exit occurs, and the statement following the entire block
is executed.

7.1.3. Example

begin real U;

U := X; X := Y; Y := Z; Z := U

end

32

7.2 Assignment Statements

7.2.1. Syntax

In the following rules the symbols τ0 and τ1 must be replaced by words as
indicated in Section 1, subject to the restriction that the type τ1 is assignment
compatible with the type τ0 as defined in 7.2.

〈τ0 assignment statement〉 ::= 〈τ0 left part〉 〈τ1 expression〉
| 〈τ0 left part〉 〈τ1 assignment statement〉

〈τ left part〉 ::= 〈τ variable〉 ‘:=’

7.2.2. Semantics

The execution of a simple assignment statement

〈assignment statement〉 ::= 〈τ0 left part〉 〈τ1 expression〉

causes the assignment of the value of the expression to the variable. If a
shorter string is to be assigned to a longer one, the shorter string is first
extended to the right with blanks until the lengths are equal. In a multiple
assignment statement

〈assignment statement〉 ::= 〈τ0 left part〉 〈τ1 assignment statement〉

the assignments are performed from right to left. For each left part variable,
the simple type of the expression or assignment variable immediately to the
right must be assignment compatible with the simple type of that variable.

A simple type τ0 is said to be assignment compatible with a simple type
τ1 if either

(1) the two types are identical (except that if τ0 and τ1 are string, the length
of the τ0 variable must be greater than or equal to the length of the τ1

expression or assignment), or

(2) τ0 is real or long real, and τ1 is integer, real or long real, or

(3) τ0 is complex or long complex, and τ1 is integer, real, long real, complex
or long complex.

In the case of a reference, the reference to be assigned must refer to a
record of one of the classes specified by the record class identifiers associated
with the reference variable in its declaration.

33

7.2.3. Examples

z := AGE(JACK) := 28

X := Y + abs Z

C := I + X + C

P := X1 ¬= Y

7.3 Procedure Statements

7.3.1. Syntax

〈procedure statement〉 ::= 〈procedure identifier〉
| 〈procedure identifier〉

‘(’ 〈actual parameter list〉 ‘)’

〈actual parameter list〉 ::= 〈actual parameter〉
| 〈actual parameter list〉 ‘,’ 〈actual parameter〉

〈actual parameter〉 ::= 〈τ expression〉
| 〈statement〉
| 〈τ subarray designator〉
| 〈procedure identifier〉
| 〈τ function identifier〉

〈τ subarray designator〉 ::= 〈τ array identifier〉
| 〈τ array identifier〉

‘(’ 〈subarray designator list〉 ‘)’

〈subarray designator list〉 ::= 〈subscript〉
| ‘*’
| 〈subarray designator list〉 ‘,’ 〈subscript〉
| 〈subarray designator list〉 ‘,’ ‘*’

7.3.2. Semantics

The execution of a procedure statement is equivalent to a process performed
in the following steps:

Step 1. A copy is made of the body of the proper procedure whose procedure
identifier is given by the procedure statement, and of the actual
parameters of the latter. The procedure statement is replaced by
the copy of the procedure body.

Step 2. If the procedure body is a block, then a systematic change of iden-
tifiers in its copy is performed as specified by step 1 of 7.1.

34

Step 3. The copies of the actual parameters are treated in an undefined order
as follows: If the copy is an expression different from a variable, then
it is enclosed by a pair of parentheses, or if it is a statement it is
enclosed by the symbols begin and end.

Step 4. In the copy of the procedure body every occurrence of an identifier
identifying a formal parameter is replaced by the copy of the cor-
responding actual parameter (cf. 7.3.2.1). In order for the process
to be defined, these replacements must lead to correct Algol W

expressions and statements.

Step 5. The copy of the procedure body, modified as indicated in steps 2-4,
is executed.

7.3.2.1 Actual-formal correspondence. The correspondence between
the actual parameters and the formal parameters is established as follows:
The actual parameter list of the procedure statement (or of the function
designator) must have the same number of entries as the formal parameter
list of the procedure declaration heading. The correspondence is obtained by
taking the entries of these two lists in the same order.

7.3.2.2 The following table summarises the forms of actual parameters
which may be substituted for each kind of formal parameter’s specification.

Formal type Actual parameter
〈τ type〉 〈τ expression〉
〈τ0 type〉 value 〈τ1 expression〉
〈τ1 type〉 result 〈τ0 variable〉
〈τ1 type〉 value result 〈τ2 variable〉
〈τ type〉 procedure 〈τ function identifier〉 | 〈τ expression〉
procedure 〈procedure identifier〉 | 〈statement〉
〈τ type〉 array 〈τ subarray designator〉

The type τ1 must be assignment compatible with type τ0. τ1 and τ2 must
be mutually assignment compatible.

7.3.2.3 Subarray designators. A complete array may be passed to a
procedure by specifying the name of the array if the number of subscripts of
the actual parameter equals the number of subscripts of the corresponding
formal parameter. If the actual array parameter has more subscripts than
the corresponding formal parameter, enough subscripts must be specified by

35

integer expressions so that the number of *’s appearing in the subarray desig-
nator equals the number of subscripts of the corresponding formal parameter.
The subscript positions of the formal array designator are matched with the
positions with *’s in the subarray designator in the order they appear.

7.3.3. Examples

INCREMENT

COPY (A, B, M, N)

INNERPRODUCT (IP, N, A(I,*), B(*,J))

7.4 Goto Statements

〈goto statement〉 ::= goto 〈label identifier〉
| go to 〈label identifier〉

7.4.1. Semantics

An identifier is called a label identifier if it stands as a label.
A goto statement determines that execution of the text be continued

after the label definition of the label identifier. The identification of that
label definition is accomplished in the following steps:

Step 1. If some label definition within the most recently activated but not
yet terminated block contains the label identifier, then this is the
designated label definition. Otherwise,

Step 2. The execution of that block is considered as terminated and Step 1
is taken as specified above.

7.5 If Statements

7.5.1. Syntax

〈if statement〉 ::= 〈if clause〉 〈statement〉
| 〈if clause〉 〈simple statement〉 else 〈statement〉

〈if clause〉 ::= if 〈logical expression〉 then

7.5.2. Semantics

The execution of if statements causes certain statements to be executed
or skipped depending on the values of specified logical expressions. An if

statement of the form

36

〈if clause〉 〈statement〉

is executed in the following steps:

Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of Step 1 is true, then the statement following the if

clause is executed. Otherwise Step 2 causes no action to be taken at
all.

An if statement of the form

〈if clause〉 〈simple statement〉 else 〈statement〉

is executed in the following steps:

Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of Step 1 is true, then the simple statement following
the if clause is executed. Otherwise the statement following else is
executed.

7.5.3. Examples

if X = Y then goto L

if X < Y then U := X else if Y < Z then U := Y else V := Z

7.6 Assert Statements

7.6.1. Syntax

〈assert statement〉 ::= assert 〈logical expression〉

7.6.2. Semantics

The assert statement is equivalent to the if statement:

if (〈logical expression〉) then endexecution

where endexecution signifies a procedure which terminates the execution of an
Algol W program. The assert statement can be used both as a debugging
aid (asserting conditions which should be true, but may not be if a bug
exists), and as a program documentation aid.

37

7.7 Case Statements

7.7.1. Syntax

〈case statement〉 ::= 〈case clause〉 begin 〈statement list〉 end

〈statement list〉 ::= 〈statement〉
| 〈statement list〉 ‘;’ 〈statement〉

〈case clause〉 ::= case 〈integer expression〉 of

7.7.2. Semantics

The execution of a case statement proceeds in the following steps:

Step 1. The expression of the case clause is evaluated.

Step 2. The statement whose ordinal number in the statement list is equal
to the value obtained in Step 1 is executed. In order that the case
statement be defined, the current value of the expression in the case
clause must be the ordinal number of some statement of the state-
ment list.

7.7.3. Examples

case I of

begin X := X + Y;

Y := Y + Z;

Z := Z + X

end

case J of

begin H(1) := -H(I);

begin H(I-1) := H(I-1) + H(I); I := I - 1 end;

begin H(I-1) := H(I-1) * H(I); I := I - 1 end;

begin H(H(I-1)) := H(I); I := I - 2 end

end

38

7.8 Iterative Statements

〈iterative statement〉 ::= 〈for clause〉 〈statement〉
| 〈while clause〉 〈statement〉

〈for clause〉 ::= for 〈identifier〉 ‘:=’ 〈initial value〉 step 〈increment〉
until 〈limit〉 do

| for 〈identifier〉 ‘:=’ 〈initial value〉 until 〈limit〉 do
| for 〈identifier〉 ‘:=’ 〈for list〉 do

〈for list〉 ::= 〈integer expression〉
| 〈for list〉 ‘,’ 〈integer expression〉

〈initial value〉 ::= 〈integer expression〉

〈increment〉 ::= 〈integer expression〉

〈limit〉 ::= 〈integer expression〉

〈while clause〉 ::= while 〈logical expression〉 do

7.8.1. Semantics

The iterative statement serves to express that a statement be executed re-
peatedly depending on certain conditions specified by a for clause or a while

clause. The statement following the for clause or the while clause always acts
as a block, whether it has the form of a block or not. The value of the con-
trol identifier (the identifier following for) cannot be changed by assignment
within the controlled statement.

(a) An iterative statement of the form

for 〈identifier〉 := E1 step E2 until E3 do 〈statement〉

is exactly equivalent to the block

begin 〈statement-0 〉; 〈statement-1 〉; ...

〈statement-I 〉; ...

〈statement-N 〉
end

when in the I th statement every occurrence of the control identifier is
replaced by the value of the expression (E1 + I × E2).

The index N of the last statement is determined by N < (E3−E1)/E2 <
N + 1. If N < 0, then it is understood that the sequence is empty. The
expressions E1, E2, and E3 are evaluated exactly once, namely before

39

execution of 〈statement-0 〉. Therefore they can not depend on the control
identifier.

(b) An iterative statement of the form

for 〈identifier〉 := E1 until E3 do 〈statement〉

is exactly equivalent to the iterative statement

for 〈identifier〉 := E1 step 1 until E3 do 〈statement〉

(c) An iterative statement of the form

for 〈identifier〉 := E1, E2, ..., EN do 〈statement〉

is exactly equivalent to the block

begin 〈statement-1 〉 ; 〈statement-2 〉; ...

〈statement-I 〉 ; ...

〈statement-N 〉
end

when in the I th statement every occurrence of the control identifier is
replaced by the value of the expression EI .

(d) An iterative statement of the form

while E do 〈statement〉

is exactly equivalent to the block

begin

L: if E then

begin 〈statement〉 ; goto L end

end

where it is understood the L represents an identifier which is not defined
at the place from which the while statement is entered.

40

7.9 Standard Procedures

Standard procedures are provided in Algol W for the purpose of commu-
nication with the input/output system. A standard procedure differs from
an explicitly declared procedure in that the number and type of its actual
parameters need not be identical in every statement which invokes the stan-
dard procedure identifier appears.

Syntax:

〈standard procedure statement〉 ::= ‘READ’ ‘(’ 〈input parameter list〉 ’)’
| ‘READON’ ‘(’ 〈input parameter list〉 ’)’
| ‘READCARD’ ‘(’ 〈input parameter list〉 ’)’
| ‘WRITE’ ‘(’ 〈transput parameter list〉 ’)’
| ‘WRITEON’ ‘(’ 〈transput parameter list〉 ’)’
| ‘IOCONTROL’ ‘(’ 〈transput parameter list〉 ’)’

〈input parameter list〉 ::= 〈τ variable〉
| 〈simple statement〉
| 〈input parameter list〉 ‘,’ 〈τ variable〉
| 〈input parameter list〉 ‘,’ 〈simple statement〉

〈transput parameter list〉 ::= 〈τ expression〉
| 〈simple statement〉
| 〈transput parameter list〉 ‘,’ 〈τ variable〉
| 〈transput parameter list〉 ‘,’ 〈simple statement〉

7.9.1 The Input/Output System

Algol W provides a single legible input stream and a single legible output
stream. These streams are conceived as sequences of records, each record
consisting of a character sequence of fixed length. The input stream has the
logical properties of a sequence of cards in a card reader; records consist of
80 characters. The output stream has the logical properties of a sequence of
lines on a line printer; records consist of 132 characters, and the records are
grouped into logical pages. Each page consists of not less than one nor more
than 60 lines.

Input records may be transmitted as strings without analysis. Alterna-
tively, it is possible to invoke a procedure which will scan the sequence of
records for data items to be interpreted as numbers, bit sequences, strings,
or logical values. If such analysis is specified, data items may be reference
denotations of the corresponding constants (cf. Section 4). In addition, the
following forms of arithmetic expressions are acceptable data items, and the

41

corresponding simple types are those determined by the rules for expressions
(cf. 6.3):

(1) 〈sign〉 〈τ constant〉

where τ is one of: integer, real, long real, complex, long complex

(2) 〈τ0 constant〉 〈sign〉 〈τ1 constant〉 | 〈sign〉 〈τ0 constant〉 〈sign〉 〈τ1 constant〉

where τ0 is one of: integer, real, long real,
and τ1 is one of: complex, long complex

Data items are separated by one or more blanks. Scanning for data
items initially begins with the first character of the input stream; after the
initial scan, it normally begins with the character following the one which
terminated the most recent previous scan. Leading blanks are ignored. The
scan is terminated by the first blank following the data item. In the process,
new records are fetched as necessary; character position 80 of one record is
considered to be immediately followed by character position 1 of the next
record. There exist procedures to cause the scanning process to begin with
the first character of a record; if scanning would not otherwise start there, a
new record is fetched.

Output items are assembled into records by an editing procedure. Items
are automatically converted to character sequences and placed in fields ac-
cording to the simple type of each item, as described below. The first
field transmitted begins the output stream; thereafter, each field is normally
placed immediately following the most recent previously transmitted field. If,
however, the field corresponding to an item cannot be placed entirely within
a non-empty record, that item is made the first field of the next record. In
addition, there exist procedures to cause the field corresponding to an item
to begin a new record. Each page group is automatically terminated after 60
records; procedures are provided for causing earlier termination.

7.9.2 Read Statements

Both READ and READON designate free field input procedures. Input records
are scanned as described in 7.9.1. Values on input records are read, matched
with the variables of the actual parameter list in order of appearance, and
assigned to the corresponding variables. The simple type of each data item
must be assignment compatible with the simple type of the corresponding
variable. For each READ statement, scanning for the first data item is caused
to begin with the first character of a record; for a READON statement, scanning
continues from the previous point of termination as determined by prior use
of READ, READON, or IOCONTROL (cf. 7.9.1).

42

READCARD designates a procedure transmitting 80 character input records
without analysis. For each variable of the actual parameter list, the scan-
ning process is set to begin at the first character of a record (by fetching a
new record if necessary), all 80 characters of that record are assigned to the
corresponding string variable, and subsequent input scanning is set to begin
at the first character of the next sequential record.

7.9.3 Write Statements

WRITE and WRITEON designate output procedures with automatic format con-
version. Values of expressions of the actual parameter list are converted to
character fields which are assembled into output records in order of appear-
ance (cf. 7.9.1). For each WRITE statement, the field corresponding to the first
value is caused to begin an output record; for a WRITEON statement, assembly
continues from the previous point of termination.

The values of a set of predeclared editing variables controls the field
widths and the formats of numerical quantities printed by the standard Al-

gol W output routines. These variables are initialized to appropriate default
settings; their values can be inspected and modified in the course of the exe-
cution of the Algol W program. Their attributes are given in the following
table:

Identifier Type Initial Value Interpretation
I_W integer 14 Width of integer fields.
R_FORMAT string(1) "F" Format of real, long real, complex

and long complex fields.
R_W integer 14 Width of real and long real fields;

width of complex and long com-
plex fields (2 × R W + 2)

R_D integer 0 Places following the decimal
point in real, long real, complex
and long complex fields.

S_W integer 2 Width of the fields of blanks ap-
pended to the end of each fields
(excluding string fields).

Values of I_W and R_W control the output field widths used for numerical
quantities, in conjunction with the values of of S_W they determine the layout
of each line of numerical output. Integer quantities are converted according to
a standard format, but three different formats for the representation of real,
long real, complex and long complex values (strictly, rounded approximations

43

of these values) are available. For a particular output value, the actual format
is determined by the interrogation of the the variable R_FORMAT, which must
specify one of the following:

(1) scaled format (R_FORMAT = "S"), in which the legible representation takes
the form of a normalized mantissa followed by an explict scale factor;

(2) aligned format (R_FORMAT = "A"), in which the representation includes
an integeral part, a frctional part with the specified number of digits,
but no scale factor;

(3) free-point format (R_FORMAT = "F"), in which the representation is chosen
to use a specified number of significate digits, with the diecimal point
suitably positioned and with a scale factor only if necessary.

Scaled and aligned representations are sometimes said to use “scientific”
and “ fixed-point” notation respectively. If scaled or free-point format is
specified, the number of significant digits printed is given by R_W - 7. If (but
only if) aligned format is specified, the number of digits following the decimal
point is controlled by the value of R_D, and the magnitude of the numerical
quantity determines then number of significant digits printed.

The field in which an output item is placed depends on the type of the
item, as follows:

Simple Type Field Description
integer Right justified in a field of I_W characters and fol-

lowed by S_W blanks.
real Right justified in a field of R_W characters and fol-

lowed by S_W blanks.
long real Right justified in a field of R_W characters and fol-

lowed by S_W blanks.
complex Right justified in a field of (2×R W+2) characters

and followed by S_W blanks.
long complex Right justified in a field of (2×R W+2) characters

and followed by S_W blanks.
logical Right justified in a field of 6 characters followed

by S_W blanks.
string Field length is exactly the length of the string.
bits Right justified in a field of 14 characters and fol-

lowed by S_W blanks.

Parameters corresponding to the syntactic class 〈simple statement〉 are
executed as they are encountered in the corresponding output lists; they

44

cause no values to be transmitted but they can (and normally should) serve
to change the values of the editing variables or the state of the input/out-
put system. Furthermore, the values of the five predeclared editing variables
I_W, R_W, R_D, R_FORMAT and S_W are automatically saved at the beginning
of execution of WRITE or WRITEON statements and restored at the end. Thus
changes to the values of these variables within a output statement are lo-
calised and can affect only the editing of the remaining elements of the list,
but assignments outside of such a list can affect all subsequent editing.

7.9.4 Control Statements

IOCONTROL designates a procedure which affects the state of the input/output
system. Argument values with defined effect are listed below; other values
currently have no effect but are explicitly made available for local use or
future expansion.

Value Action (cf. 7.9.1)
1 Subsequent input scanning begins with the first

character of a record.
2 Subsequent output assembly begins with the first

field of a record.
3 Subsequent output assembly begins with the first

field of a record which, in turn, begins a new out-
put page.

4 Subsequent output assembly has no provision for
automatic page skips.

5 Subsequent output assembly contains control
characters providing automatic page skips. (Ini-
tial option.)

45

7.9.5. Examples

READCARD(S, LINE(10|180))

WRITE("AVERAGEÃ=", SUM / N)

WRITEON(X(1,J))

IOCONTROL(2)

Execution of the program,

begin

procedure SCALED (integer value N);

begin R_FORMAT := "S"; R_W := N+7

end;

procedure ALIGNED (integer value N,D);

begin R_FORMAT := "A"; R_W := N+D+1; R_D := D

end;

procedure FREE_POINT (integer value N);

begin R_FORMAT := "F"; R_W := N+7

end;

procedure NEW_LINE; IOCONTROL(2);

FREE_POINT(5); I_W := 2; S_W := 1;

for I := -1, 0, 32 do

begin WRITE(S_W := 0, I, ":", NEW_LINE, I/3);

WRITEON("IÃÃ", ALIGNED(3,2), I/3, "*", SCALED(12), I/3, "*")

end

end.

will produce the following lines:
-1:

ÃÃÃÃ-0.33333IÃÃÃ-0.33Ã*Ã-3.33333333333’-01Ã*

Ã0:

ÃÃÃÃÃÃÃÃÃÃÃ0IÃÃÃÃ0.00Ã*ÃÃÃÃÃÃÃÃÃÃÃÃÃÃ0ÃÃÃÃÃ*

32:

ÃÃÃÃÃÃ10.667IÃÃÃ10.67Ã*ÃÃ1.06666666667’+01Ã*

Note that the setting of S_W when the corresponding quantity is transmit-
ted determines the number of trailing blanks; also, edited valued are always
rounded.

Any values assigned to I_W, R_W, S_W in excess of 132 are treated as 132.
In the event that the values of I_W, R_W, R_D, S_W, or R_FORMAT are erro-
neous or inconsistent with the magnitude or precision of the number to be
transmitted then alternative values are used. These values ensure that an

46

X TRUNCATE(X) ENTIER(X) ROUND(X)

2.3 2 2 2
2.5 2 2 3
2.7 2 2 3
-2.3 -2 -3 -2
-2.5 -2 -3 -3
-2.7 -2 -3 -3

Table 3: Values for TRUNCATE, ENTIER, and ROUND

approximation to the number is always transmitted and that not more digits
than are warranted by the precision of then number are transmitted.

8 Standard Functions and Predeclared Iden-

tifiers

The Algol W environment includes declarations and initialization of certain
procedures and variables which supplement the language facilities previously
described. Such declarations and initialization are considered to be included
in a block which encloses each Algol W program (with terminating period
eliminated).

8.1 Standard Transfer Functions

Certain functions for conversion of values from one simple type to another
are provided. These functions are predeclared; the corresponding implicit
declaration headings are listed below:

integer procedure TRUNCATE (real value X);

comment the integer i such that i ≤ |X| < |i| and i × X ≥ 0 ;

integer procedure ENTIER (real value X);

comment the integer i such that i ≤ X < i + 1 ;

integer procedure ROUND (real value X);

comment the value of the expression;
if X < 0 then TRUNCATE(X-0.5) else TRUNCATE(X+0.5);

integer procedure EXPONENT (real value X);

comment 0 if X = 0, otherwise the largest integer i such that i ≤ log16(|X|)+1.
This function obtains the exponent used in the S/360 representation of the real
number ;

47

real procedure ROUNDTOREAL (long real value X);

comment the properly rounded value of X ;

real procedure REALPART (complex value Z);

comment the real component of Z ;

long real procedure LONGREALPART (long complex value Z);

real procedure IMAGPART (complex value Z);

comment the imaginary component of Z ;

long real procedure LONGIMAGPART (long complex value Z);

complex procedure IMAG (real value X);

comment the complex number 0 + Xi ;

long complex procedure LONGIMAG (long real value X);

logical procedure ODD (integer value N);

comment the logical value; N rem 2 = 1;

bits procedure BITSTRING (integer value N);

comment two’s complement representation of N ;

integer procedure NUMBER (bits value X);

comment integer with two’s complement representation X ;

integer procedure DECODE (string(1) value S);

comment numeric code for the character S (cf. Appendix A) ;

string(1) procedure CODE (integer value N);

comment character with numeric code given by abs (N rem 256) (cf. Ap-
pendix A) ;

In the following comments, the significance of characters in the prototype
formats is as follows:

D decimal digit in a mantissa or integer
E decimal digit in an exponent
A hexadecimal digit in a mantissa or integer
B hexadecimal digit in an exponent
± sign (blank for positive mantissa or integer)

⊔ blank

Each exponent is unbiased. Decimal exponents represent powers of 10; hex-
adecimal exponents represent powers of 16. Each mantissa (except 0) repre-
sents a normalized fraction less than one. Leading zeroes are not suppressed.

48

string(12) procedure BASE10 (real value X);

comment string encoding of X with format ⊔±EE±DDDDDDD ;

string(12) procedure BASE16 (real value X);

comment string encoding of X with format ⊔⊔±BB±AAAAAA ;

string(20) procedure LONGBASE10 (long real value X);

comment string encoding of X with format ⊔±EE±DDDDDDDDDDDDDDD ;

string(20) procedure LONGBASE16 (long real value X);

comment string encoding of X with format ⊔⊔±BB±AAAAAAAAAAAAAA ;

string(12) procedure INTBASE10 (integer value N);

comment string encoding of N with format ⊔±DDDDDDDDDD ;

string(12) procedure INTBASE16 (integer value N);

comment unsigned, two’s complement string encoding of N with format

⊔⊔⊔⊔AAAAAAAA ;

8.2 Standard Functions of Analysis

The following functions of analysis are provided in the system environment.
In some cases, they are partial functions; action for arguments outside of
the allowed domain is described in 8.5. These functions are predeclared; the
corresponding implicit declaration headings are listed below:

real procedure SQRT (real value X);

comment the positive square root of X, domain : X ≥ 0 ;

long real procedure LONGSQRT (long real value X);

comment the positive square root of X, domain : X ≥ 0 ;

real procedure EXP (real value X);

comment eX, domain : X < 174.67 ;

long real procedure LONGEXP (long real value X);

comment eX, domain : X < 174.67 ;

real procedure LN (real value X);

comment logarithm of X to the base e, domain : X ≥ 0 ;

long real procedure LONGLN (long real value X);

comment logarithm of X to the base e, domain : X ≥ 0 ;

49

real procedure LOG (real value X);

comment logarithm of X to the base 10, domain : X ≥ 0 ;

long real procedure LONGLOG (long real value X);

comment logarithm of X to the base 10, domain : X ≥ 0 ;

real procedure SIN (real value X);

comment sine of X (radians), domain : −823550 < X < 823550 ;

long real procedure LONGSIN (long real value X);

comment sine of X (radians), domain : −3.537×1015 < X < 3.537×1015 ;

real procedure COS (real value X);

comment cosine of X (radians), domain : −823550 < X < 823550 ;

long real procedure LONGCOS (long real value X);

comment cosine of X (radians), domain : −3.537×1015 < X < 3.537×1015 ;

real procedure ARCTAN (real value X);

comment arctangent (radians) of X, range : −π/2 < ARCTAN(X) < π/2 ;

long real procedure LONGARCTAN (long real value X);

comment arctangent (radians) of X, range : −π/2 < LONGARCTAN(X) < π/2 ;

8.3 Time Function

The Algol W environment includes a clock which measures elapsed time
since the beginning of program execution. The resolution of that clock is
1/60 second. A predeclared function is provided for reading the clock.

integer procedure TIME (integer value N);

Argument N Result Units
-1 time of day seconds/60
0 elapsed execution time minutes/100
1 elapsed execution time seconds/60
2 elapsed execution time seconds/38400

The result for any other argument is not defined.

50

8.4 Predeclared Variables

The following variables are to be considered declared and initialized by as-
signment in the conceptual block enclosing the entire Algol W program.

The values indicated for real and long real quantities are to be understood
as decimal approximations to the actual machine-format values provided.

integer I_W;

comment initialized to 14, controls output field size for integers (cf. 7.9.1) ;

integer R_W;

comment initialized to 14, controls output field size for real, long real, complex

and long complex quantities (cf. 7.9.1) ;

integer R_D;

comment initialized to 0, specifies the number of fraction digits in aligned
formats (cf. 7.9.1) ;

integer R_FORMAT;

comment initialized to "F", controls output format for real, long real, complex

and long complex quantities (cf. 7.9.1) ;

integer S_W;

comment initialized to 2, specifies the number of blanks append to to the
end of an ouput numberic field (cf. 7.9.1) ;

integer MAXINTEGER;

comment initialized to 2147483647, the maximum positive integer allowed
by the implementation ;

real EPSILON;

comment initialized to 9.536743×10−7, the largest positive real number ǫ
provided by the implementation such that 1 + ǫ = 1 ;

long real LONGEPSILON;

comment initialized to 2.22044604925031×10−16, the largest positive long

real number ǫ provided by the implementation such that 1 + ǫ = 1 ;

long real MAXREAL;

comment initialized to 7.23700557733226×1075, the largest positive long real

number provided by the implementation ;

low real PI;

comment initialized to 3.14159265358979 ;

51

8.5 Exceptional Conditions

The facilities described below are provided in Algol W to allow detection
and control of certain exceptional conditions arising in the evaluation of
arithmetic expressions and standard functions.

Implicit declarations:

record EXCEPTION (

logical XCPNOTED;

integer XCPLIMIT, XCPACTION;

logical XCPMARK;

string(64) XCPMSG);

reference(EXCEPTION)

OVFL, UNFL, DIVZERO,

INTOVFL, INTDIVZERO,

SQRTERR, EXPERR, LNLOGERR, SINCOSERR;

Associated with each exceptional condition which can be processed is
a predeclared reference variable to which references to records of the class
EXCEPTION can be assigned. Fields of such records control the processing of
exceptions. The association between conditions and reference variables is as
follows:

Reference Variable Conditions
ENDFILE end of file detected in input
OVFL real, long real, complex, long complex (exponent)

overflow
UNFL real, long real, complex, long complex (exponent)

underflow
DIVZERO real, long real, complex, long complex division by

zero
INTOVFL integer overflow
INTDIVZERO integer division by zero
SQRTERR negative argument for SQRT, LONGSQRT
EXPERR argument of EXP, LONGEXP out of domain (cf. 8.2)
LNLOGERR argument of LN, LOG, LONGLN, LONGLOG out of do-

main (cf. 8.2)
SINCOSERR argument of SIN, COS, LONGSIN, LONGCOS out of do-

main (cf. 8.2)

When one of the conditions listed above is detected, the corresponding
reference variable is interrogated, and one of the alternatives described below
is chosen.

52

Table 5: Results for Exceptional Conditions

condition XCPACTION XCPACTION XCPACTION Reference
6= 1 or 2 = 1 = 2 = null

ENDFILE1 0 0 0 0
OVFL exponent 128 ±MAXREAL 0 exponent 128

too small too small
UNFL exponent 128 0 0 0

too large
DIVZERO dividend ±MAXREAL 0 dividend
INTOVFL true result true result true result true result

±232 ±232 ±232 ±232

INTDIVZERO dividend dividend dividend dividend
SQRTERR 0 SQRT(abs X) 0 0
EXPERR 0 MAXREAL 0 0
LNLOGERR 0 -MAXREAL 0 0
SINCOSERR 0 0 0 0
1 When an ENDFILE condition occurs on attempting to read a string, a string

of blanks is supplied; for a logical value false is supplied.

If the value of the reference variable interrogated is null, the condition is
ignored and execution of the Algol W program continues. In such situa-
tions, a value of 0 is returned as the value of a standard function. For other
conditions the result is that provided by the underlying IBM System/360
hardware. In determining such a result, it is to be noted that in those cases
in which the detection of exceptional conditions can be inhibited at the hard-
ware level, namely integer overflow and exponent underflow, detection is so
inhibited when the corresponding reference is null.

If the value of the reference variable interrogated is not null, the fields
of the record designated by that reference are interrogated, and processing
action is that described by the algorithm given below in the form of an
extended Algol W procedure. Identifiers in lower case represent quantities
which transcend the Algol W language; they are explained subsequently.

53

procedure PROCESSEXCEPTION (reference(EXCEPTION) value CONDITION);

begin

XCPNOTED(CONDITION) := true;

XCPLIMIT(CONDITION) := XCPLIMIT(CONDITION) - 1;

if (XCPLIMIT(CONDITION) < 0) or XCPMARK(CONDITION) then

WRITE("*****ÃERRORÃNEARÃCOORDINATEÃnnnn - ",

XCPMSG(CONDITION));

if XCPLIMIT(CONDITION) < 0 then endexecution else

if specialcondition then

resultant := default else

resultant := if XCPACTION(CONDITION) = 1 then adjustment

else if XCPACTION(CONDITION) = 2 then 0L

else default

end PROCESSEXCEPTION

This procedure is invoked with the value of the reference variable appro-
priate to the condition as actual parameter. The significance of the special
identifiers used is as follows:

nnnn approximate coordinate of the source code which was being executed
when the exceptional condition was detected

endexecution procedure to terminate execution of the Algol W program

specialcondition logical value which is true if, and only if, the condition
being processed is one of those listed below

default result of the operation or function provided by the Algol W sys-
tem prior to invocation of the exception processing procedure; this is
defined by the hardware for arithmetic operations and is the value 0
for standard functions

resultant value to be returned as the result of the arithmetic evaluation or
standard function invocation

adjustment adjusted result of the operation according to the following table:

54

Special Condition Adjustment

Exponent overflow,
division by zero if default < 0 then -MAXREAL else MAXREAL

Exponent underflow 0L

Argument X out of domain for:
SQRT, LONGSQRT SQRT(abs X), LONGSQRT(abs X)

EXP, LONGEXP MAXREAL

LN, LONGLN -MAXREAL

LOG, LONGLOG -MAXREAL

SIN, LONGSIN 0L

COS, LONGCOS 0L

ENDFILE on input; according to type:
numerical 0

logical false

string "Ã"

bits #0

The reference variable UNFL is initialized by the system to null. All other
reference variables listed above are initialized to references to a special record
which is accessible only by the system. Interrogation of this record by the
procedure described above has the effect of causing the Algol W program
to be terminated with a message indicating the type of exception. Any other
attempt to access any field of this record will result in a reference error.

8.5.1. Example

It is desired to allow up to ten overflows, but to each time replace the result
with MAXREAL and to print a warning message.

The values needed for this are:

XCPNOTED false this will be changed to true if an overflow occurs.
XCPLIMIT 10 allow up to ten overflows before being cut off.
XCPACTION 1 replace the result with +MAXREAL.
XCPMARK true print a message each time an overflow occurs.
XCPMSG "..." message to be printed.

The following assignment statement will establish the proper environ-
ment:

OVFL := EXCEPTION(false, 10, 1, true, "OVERFLOWÃFIXEDÃUP");

55

A Character Encodings

The following table presents the correspondence between printable string
characters and their (EBCDIC) integer encodings. This encoding establishes
the ordering relation on characters and thus on strings. Those characters
in parentheses are not available on the line printer. Integer codes not listed
below do not correspond to any established character. (Also see CODE, DECODE
on page 48.)

64 space 129 (a) 193 A 240 0

130 (b) 194 B 241 1

74 (/c) 131 (c) 195 C 242 2

75 . 132 (d) 196 D 243 3

76 < 133 (e) 197 E 244 4

77 (134 (f) 198 F 245 5

78 + 135 (g) 199 G 246 6

79 | 136 (h) 200 H 247 7

80 & 137 (i) 201 I 248 8

249 9

90 (!) 145 (j) 209 J

91 $ 146 (k) 210 K

92 * 147 (l) 211 L

93) 148 (m) 212 M

94 ; 149 (n) 213 N

95 ¬ 150 (o) 214 O

96 - 151 (p) 215 P

97 / 152 (q) 216 Q

153 (r) 217 R

107 ,

108 % 162 (s) 226 S

109 _ 163 (t) 227 T

110 > 164 (u) 228 U

111 ? 165 (v) 229 V

166 (w) 230 W

122 : 167 (x) 231 X

123 # 168 (y) 232 Y

124 @ 169 (z) 233 Z

125 ’

126 =

127 "

56

Index of Syntactic Entities

〈τ array declaration〉, 13, 14
〈τ array designator〉, 22
〈τ array identifier〉, 7, 22, 34
〈τ assignment statement〉, 31, 33
〈τ block expression〉, 21
〈τ constant〉, 10–12, 21
〈τ expression 1 〉, 21, 27, 28
〈τ expression 2 〉, 21, 27, 28
〈τ expression 3 〉, 21, 27, 28
〈τ expression 4 〉, 21, 27, 28
〈τ expression 5 〉, 21, 24, 27
〈τ expression 6 〉, 21, 24
〈τ expression 7 〉, 21, 24, 28
〈τ expression 8 〉, 21, 24, 28, 29
〈τ expression〉, 14, 16, 21, 22, 29,

30, 33–39, 41
〈τ field designator〉, 22
〈τ field identifier〉, 7, 22
〈τ function designator〉, 23
〈τ function identifier〉, 7, 23, 34,

35
〈τ function procedure declaration〉,

16, 31
〈τ subarray designator〉, 34, 35
〈τ variable identifier〉, 7, 22
〈τ variable〉, 22, 29, 33, 35, 41
〈actual parameter list〉, 23, 34
〈actual parameter〉, 34
〈assert statement〉, 31, 37
〈bar〉, 4, 6, 29
〈bit constant〉, 11
〈block body〉, 16, 21, 32
〈block〉, 31, 32
〈case clause〉, 30, 38
〈case statement〉, 31, 38
〈complex constant〉, 10
〈conditional τ expression〉, 21, 30

〈control identifier〉, 7, 24
〈declaration〉, 13, 32
〈empty〉, 4, 29, 31
〈equality operator〉, 27
〈external reference〉, 16, 16
〈for clause〉, 39
〈formal array parameter〉, 16
〈formal parameter list〉, 16
〈formal type〉, 16, 16
〈goto statement〉, 31, 36
〈identifier list〉, 7, 13, 14, 16
〈identifier〉, 7, 16, 19, 32, 39
〈if clause〉, 30, 36
〈if statement〉, 31, 36
〈inequality operator〉, 27
〈integer constant〉, 10, 13, 29
〈iterative statement〉, 31, 39
〈label definition〉, 32
〈label identifier〉, 7, 36
〈logical constant〉, 11
〈long complex constant〉, 10
〈long real constant〉, 10
〈procedure declaration〉, 13
〈procedure heading〉, 16
〈procedure identifier〉, 7, 34, 35
〈procedure statement〉, 31, 34
〈program〉, 31
〈proper procedure declaration〉, 16,

31
〈real constant〉, 10
〈record class declaration〉, 13, 19
〈record class identifier〉, 7, 13, 27,

29
〈record designator〉, 29
〈reference constant〉, 12
〈relation〉, 27
〈simple τ variable〉, 22

57

〈simple statement〉, 31, 36, 41
〈simple type〉, 13, 14, 16
〈simple variable declaration〉, 13, 13,

19
〈standard procedure statement〉, 31,

41
〈statement〉, 16, 31, 32, 34–36, 38,

39
〈string constant〉, 12, 16
〈subscript〉, 22, 34
〈substring designator〉, 22, 29
〈while clause〉, 39

58

Words with Special Meanings in Algol W

¬, 27, 28
*, 24
**, 25
+, 24
-, 24
/, 24

abs, 24, 25
algol, 16
and, 27, 28
ARCTAN, 50
array, 14
assert, 37

BASE10, 48
BASE16, 49
bits, 13
BITSTRING, 48

case, 30, 38
CODE, 48
comment, 6
complex, 13
COS, 50

DECODE, 48
div, 24, 25
DIVZERO, 52

else, 30, 37
end, 6
ENDFILE, 52
ENTIER, 47
EPSILON, 51
EXCEPTION, 52
EXP, 49
EXPERR, 52
EXPONENT, 47

false, 11, 27

for, 8, 39
fortran, 16

goto, 36

I W, 43, 46, 51
if , 30, 36
IMAG, 48
IMAGPART, 48
INTBASE10, 49
INTBASE16, 49
INTDIVZERO, 52
integer, 13
INTOVFL, 52
IOCONTROL, 42, 45, 46
is, 27

LN, 49
LNLOGERR, 52
LOG, 49
logical, 13
long, 24, 26
long complex, 13
long real, 13
LONGARCTAN, 50
LONGBASE10, 49
LONGBASE16, 49
LONGCOS, 50
LONGEPSILON, 51
LONGEXP, 49
LONGIMAG, 48
LONGIMAGPART, 48
LONGLN, 49
LONGLOG, 50
LONGREALPART, 48
LONGSIN, 50
LONGSQRT, 49

MAXINTEGER, 51

59

MAXREAL, 51

null, 12, 13, 27
NUMBER, 48

ODD, 48
of, 30
or, 27, 28
OVFL, 52

PI, 51
procedure, 16, 17

R D, 43, 46, 51
R FORMAT, 43, 46, 51
R W, 43, 46, 51
READ, 42
READON, 42
real, 13
REALPART, 48
record, 19
reference, 13
rem, 24, 25
result, 16, 18
ROUND, 47
ROUNDTOREAL, 48

S W, 43, 46, 51
shl, 24, 28
short, 24
shr, 24, 28
SIN, 50
SINCOSERR, 52
SQRT, 49
SQRTERR, 52
step, 39
string, 13

then, 30
TIME, 50
true, 11, 27
TRUNCATE, 47

UNFL, 52
until, 39

value, 16, 17

while, 39, 40
WRITE, 43, 46
WRITEON, 43, 46

XCPACTION, 52
XCPLIMIT, 52
XCPMARK, 52
XCPMSG, 52
XCPNOTED, 52

60

Index

Arithmetic expression, 24
Array

Bound pair, 15, 22, 32
Declaration, 14
Dimension, 14, 36
Element, 15
Indices, 15

assert statement, 37
Assignment

Assignment statement, 33
Compatibility, 30, 33, 33, 35

Bit expression, 28
Block, 32
Boolean expression, 26
Built-in functions, 47

Call, see Procedure
case expression, 30
case statement, 38
Characters, see System 360, EBCDIC,

12
Comments, 6
Conditional expression, 30
Constants, 9, 10
Control identifier, 7, 8, see for State-

ment, 39
Conversions, 25

Data types, 9
Declaration, 8, 13

EBCDIC
String comparison, 27

Exceptional conditions, 52
Overflow, 53
Underflow, 53

Execution, 6
Expression, 20

External References, 18

Field, see Record
for statement, 39
Fortran, see External References
Function, see Procedure

Declaration, 16
Designator, 23
Procedure, 10, 17, 23

goto statement, 36

Identifier
Binding, 8

if expression, 30
if statement, 36
Input/Output System, 41, 45

Constants for input, 41
Editing variables, 43
Page eject, 45

Iterative statements, 39

Keywords, 6

Label, 32
Identifier, 8, 36

Logical expression, 26

Not defined, 6, 6, 13, 31
Not valid, 6, 15, 17

Operators, 6
Precedence, 20, 22

Parameter
Actual, 35
Actual-formal correspondence,

35
Formal, 8, 17, 35

Predeclared identifiers, 51

61

Predefined variables, 8
Procedure, 10

Body, 17, 18, 23, 34
Call, 23, 34
Copy rule, 34
Declaration, 16
Name parameter, 34
Parameter, 34
Proper, 10, 17, 18, 34

Programs, syntax of, 5

Quantities, 8

Record
Class Declaration, 19
Creation, 30
Field designator, 19, 22

Reference
Declaration, 14
Denotation, 9, 10, 41
Expression, 29

Reserved words, 7

Scope, 9, 13, 32
Simple value, 9
Simple variable, 13
Standard functions, 8, 47
Standard procedures, 8, 41
Statement, 31
String

default length, 14
String expression, 29
Structured value, 9, 13
Subarray, 35
Substring, 29
Syntactic entities, 7
System 360, 47

EBCDIC, 6, 12, 27, 56
floating point, 47
Input/Output, 41
Operations, 6, 26

Transfer functions, 47
Triplet rules, 21, 24
Type, 9, 13

array, 10
bits, 10, 14, 28
complex, 10, 25
integer, 10, 24
logical, 10, 11, 27, 37, 40
long complex, 10, 25
long real, 10, 25
real, 10, 24
record, 10
reference, 10, 14
string, 10, 14, 30, 31

Unit of action, 6
Units of action, 20, 31

Value, 9, 14
Variable, 9, 10, 13, 14, 22

Simple, 13

while statement, 40

62

