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Algol W Deck Set-Up

< Job Card >

//JOBLIB DD lmUME=SYS2~ J?RCX3LIB,DISP=(OLD,@GS)

/I EXEC ALGOLW

//ALGOLW.SYSIN  DD *

$AxGOL

< program>

< data>

* Optional

qote : The maximum execution time or number of printed lines for the

job may optionally be specified on the $AEOL card. Columns 10-29

of that card are scanned for such specification according to the

following syntax:

<limit specification> l +5. . <time limit, \ <time limi*, Qine limit3

<time limi-0 . .=. . <minutes specification2 \

<minutes specificatior9 : <seconds specification2

<minutes specification> ::= <unsigned integer> \ (empty}

<seconds specification) ;:= <unsigned integer? \ (empty)

<line limi.0 . .=. . <unsigned integer> \ (empty)
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An empty field is given the value zero0 If the time limit specified is

ZfTO, termination for excess time is controlled by the $5 jcb card.
Other-

wise, the program is automatically terminated if necessary at the end

of the indicated time. Similarly, if the line limit specified is zero,

termination for excess lines is controlled by the $S job card; otherwise,

the program is automatically terminated if necessary after the indicated

number of lines have been printed0
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"A Contribution to the Development

of ALGOL" by Niklaus Wirth and C;t A. R.

130are1) was the basis for a compiler de-

veloped for the IBM 360 at Stanford Univer-

sity. This report is a description of the

implemented language, ALGOL W. Historical

background and the goals of the language

may be found in the Wirth and Hoare paper.

') Wirth, Niklaus and Hoare, C. A. R-9 "A
Contribution to the Development of ALGOL",
Comm. ACM 9, 6(June 1966), pp. 413-431.
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1. TEFW!NOLOGY, NOTATION AND RASIC DEFINITIONS

The Reference Language is a phrase structure language> defined by

a formal met&Language. This metalanguage makes use of,the notation and

definitions explained below. The structure of the language AIGOL W

is determined by:

(1) Y, the set of basic constituents of the language,

(2) l.4, the set of syntactic entities, and

(3) 63, the set of syntactic rules, or productions.

1.1. Notation

A syntactic entity is denoted by its name (a sequence of letters)

enclosed in the brackets < and >. A syntactic rule has the form

where <A> is a member of u, x is any possible sequence of basic con-

stituents and syntactic entities, simply to be called a "sequence",

The form

is used as an abbreviation for the set of syntactic rules

<A> ::=x

aD ::=y

*...*a...

a ::= z

1.2, Definitions

1. A sequence x is said to directly produce a sequence y if and

1



only if there exist (possibly empty) sequences u and w, so that

either (i) for some <& in U, x = KDw, y = uvw, and <D ::=

v is a rule in 63; or (ii) x = uw, y = uvw and v is a "comment"

(see below).

2. A sequence x is said to produce a sequence y if and only if

there exists an ordered set of sequences s[O], s[l], . . . , s[n],

so that x = s[O], s[n] = y, and s[i-l] directly produces s[i] for

all i = 1, . . . , n.

30 A sequence x is said to be an ALGOL W program if and only if

its constituents are members of the set 2/, and x can be produced

from the syntactic entity <prograD.

The sets Y and u are defined through enumeration of their members

in Section 2 of this Report (cf. also 4.4,). The syntactic rules are

given throughout the sequel of the Report. To provide expknations

for the meaning of ALGOL W programs, the letter sequences denoting

syntactic entities have been chosen to be English words describing

approximately the nature of that syntactic entity or construct, Where

words which have appeared-in this manner are used elsewhere in the

text, they refer to the corresponding syntactic definition. Along

with these letter sequences the symbol y may occur. It is understood

that this symbol must be replaced by any one of a finite set of English

words (or word pairs). Unless otherwise specified in the particular

section, all occurrences of the symbol J within one syntactic rule

must be replaced consistently, and the replacing words are

2



integer

real

long real

complex

long complex

For example, the production

<Y term ::= <J factor>

corresponds to

<integer terni> " Y-.J u-

<real terr0 " J L-* u-

<long real term ;:=

<complex term ; :f3

<long complex terrrlr ::-

The production

logical

bit

string

reference

(cf. 6.3.1.)

<integer factor>

<real factor>

<long real factor>

<complex factor>

<long complex factor>

<TO primary> : ;:- long <II primary> (cf. 6.3.1. and
table for long

corresponds to 6.3.2.7.)

<long real primary> ::= ,l*Jd <real primary2

<long real primary> ::- long <integer primarp

<long complex primary> :;= long <complex primary>

Tt is recognized that typographical entities exist of lower order

than basic symbols, called characters. The accepted characters are

those of the IBM System J6@ EBCDIC code.

The symbol comment followed by any seq:lence  of characters not

containing semicolons, followed by a semicolon, is called a comment.

A comment has no effect on the meaning of a program, and is ignored

during execution of the program. An identifier (cf. 3.1.) immediately

3



following the basic symbol G is also regarded as a comment.

The execution of a program can be considered as a sequence of

units of action. The sequence of these unit)5 of action is defined as

the evaluation of expressions and the exectition of statements as de-

noted by the program. Sn the definition of the implemented language

the evaluation or execution of certain constructs is either (1) de-

fined by System 360 operations, e.g., real arithmetic or (2) left
>

i undefined, e.g., the order of evaluation of arithmetic primaries in

\ expressions, or (3) said to be not valid or not defined.

t
2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

L 2.1. Basic Symbols

true 1 false I " I null I # I y 1

integer I real 1 complex 1 logical 1 ,bits 1 a I

reference 1 long real I long complex I array I

procedure I record 1

, 1 ; I I I U I ( I ) I begin I end I if I then I else I

-case 1 f 1 -y- 1 - 1 * 1 / 1 ** I-~i/~i-y&&sI
s 1 long I short 1 and I or I 7 1 1 I t= I 771 <I

<&(>=)::I--

step I until I do 1 while I- -

All underlined words, which we call “reserved words" , are repre-

sented by the same words in capital letters in an actual programs  with

ni; inteY~/~~~lng bLankis



Adjac&t reserved words, identifiers (cf. 3A) and numbers must have

no blanks and must be separated by at least one blank space0 Otherwise

blanks have no meaning and can be used freely to improve the read-

ability of the program.

2.2. Syntactic Entities

(with corresponding section numbers)

<actual parameter listi

<actual parameter>

<bit factor>

<bit primarp

<bit secondarp

<bit sequence>

<bit term

<block bodp

<block head>

<bloc&

<bound pair 1isQ

<bound pair>

<case clause>

<case statementi

<control identifier>

CdeclaratioO

<digit>
&3nensionLspecification)
<empty> see page 34
<equality operator>

<expression list>

<field lis0

<for clause

<for lis0

<formal array parameter3

<formal .pararnetxr  listi

’ <formal parameter  segment>

783

703

6.5

6.5

6.5

4.3

6.5

7.1

7.1

7-l

5 l ?
5 -2
6

7.6

3*1

5

3.1
5*3

6.4

6.7

5 l 4

77

7-7

5*3

5.3

503

<formal ty-p&

<go to statemen

-<hex digit>

<identifier list>

<identifier>
<if clause>
<if statement-=
-<imaginary nGber>

<increment>

<initial value>

<iterative statementi

<label definitioD

<label identifier>

<letter3

<limit>

<logical element>

<logical facto*

<logical primarp

<logical ter@

<logical vaLue>

<lower bounds

'<null reference)

<procedure decJ.asatiom

<procedure headin&

<procedure identif ie+

<procedure statement>

<progra@ ’

5*3

7.4

4.3

3J

3.1
6
7.: 5
4.i

7.7

7-7

7-7 .

7.1

3*1

3J

7J
6.4

6.4

6.4

6.4

4.2

5.2

4.5

5-3

503

3.1

7;3

7
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1
L
I
i

<proper procedure bodp

<proper procedure
declaratioo

<record class declaratioa

<record class identifier>

<record class identifier
listr

<record designator>

<relatio*

_ <relational operator>

<scale factor>

<sig*

<simple bit expressis

<simple logical expressio*

<simple reference
expression>

<simple statement3

. <simple string expressi

<simple Texpressiom

<simple s variable

<simple type=>

<simple variable
deckratio

<statement list>

<statement>

<string primarp

<string3

<subarray designator list>

<subscrip

3* IDkYTIFIERS

3.1. Syntax

5"'2

5 -4

301

5.1

6.7
6.4

6.4

4.1

4.3

6l

6:;

6.:

7

6.6

62

6:;

5.1

<s function identifier>

CT function procedure bodp

:y function procedure
declaratio*

3 left part;>

3' number>P c
)

i
<

<

C

. c

-<

3 primarp

:J subarray designator>
S terrt3
3 variable>
:g-variable identifier>

:unscaled real><

<upper boun&

while clause

<subscript listi
<subs-king designator>
.g array declaration>
<J array desfgnator>

<J array identifier>

<g assignment statementi

0 expression 1isW

<g expression>

=-CT factor>

-3' field designator>

<s field identifier>

<r function designator>

6.1
606
512
6.1

3J

702

6

6

6.3
6.1

3J.
6.2

3J-

5e3

503

702

4.1

6.3

502

7-7

<identifier> : := <letter3 1 <identifier> <letter> 1 <identifier> <digit>
‘<J variable identifier> : : = <identifier>

6



<g array identifier> : ,'z <identifier>

<procedure identifier> : :Lzz <identifier>

<T function identifier> : := <identifier>

<record class identifier> ::= <identifier>

<S field identifier> ::= <identifier>

<label identifier> : := <identifier>

<control identifier> : := <identifier>

<letter> ::= AIBICIDIEIFIG(NlII~l~~L~M~

<digit> ::=
~~~~~~~l~l~l~l~l~l~l~l~l~

0l~l21314151-f+18l9
<identifier list> : := <identifier> I <identifier list> , <identifier>

3.2. Semantics

Variables, arrays, procedures, record classes and record fikitds

are said to be quantities. Identifiers serve to identify quantities,

or they stand as labels, formal parameters or control identifiers.

Identifiers have no inherent meaning, and can be chosen freely in the

reference language. In an actual program a reserved word cannot be

r

i
used as an identifier.

fiery identifier used in a program must be defined. This is

achieved through

( >a a declaration (cf. Section 5), if the identifier identifies a

quantity. It is then said to denote that quantity and to be a

T variable identifier, 7' array identifier, J procedure identifier,

T function identifier, record class identifier or T field iden-

tifier, where the symbol 3' stands for the appropriate word re-

flecting the type of the declared quantity;

(b) a label definition (cf. ?A.), if the identifier stands as a



label. It is then said to be a label identifier;

(c) its occurrence in a formal parameter list (cf. 5.3.). It is then

said to be a formal parameter;

(d) its occurrence following the symbol for in a for clause (cf. 7*7&

It is then said to be a control identifier;

(e) its implicit declaration in the language. Stand.ard  procedures,

standard functions, and predefined variables (cf. 8,3) may be

considered to be declared in a block containing the progranz.

The recognition of the definition of a given identifier is de-

i

i

termined by the following rules:

I

L

Step 1. If the identifier is defined by a declaration of a

quantity or by its standing as a label within the smallest block

L
(cf.‘7.1.)  embracing a given occurrence of that identifier, then

it denotes that quantity or label. A statement following a pro-

iL

c

cedure heading (cf. 5.3.) or a for clause (cf. ‘7.7-) is considered

to be a block.

L Step 2. Otherwise, if that block is a procedure body and if the

given identifier is identical with a formal parameter in the asso-

ciated procedure heading, then it stands as that formal parameter.

Step 3* Otherwise, if l&at, block is preceded by a for clause

and the identifier is identical to the control identifier of

that for clause, then it stands as that control identifier.

Otherwise, these rules are applied considering the smallest

block embracing the block which has previously been considered.

8



If either step 1 or step 2 couid lead to more than one definition,

then the identification is unde?ined.

The scope cf a qtiantity,  a I?-ab?L, ii forma1 parameter, or a con-

trol identifier is the set of statements in which occurrences of an

identifier may refer by the above r-pies to the definition of that

quantity, label, formal parameter or COilt~Ol identifier.

3,3. Examples,

I

PERSON

ELDERSESLING

x15, x20, x25

4. VALUES AND '-W?IB

Constants and variabies (cf. 6.1.) are said to possess a value.

The value of a konstant is determ2ncd by the denotation of the zon-

stant * In the language, &- CCCSta,l?,ks  (except refe;-ensea) have a

reference denotation {cf, k‘.L1.<-,Lc Bk,jV I'ke value of a variable 1s the

one most recently assign?.? to -char vz:"iable. A vaPue Is (recursively)

defined as either a stiple vaX.uc or a str,xc-zcred vaLue (an. ordered set

of one or more values). Eyes-v vFN;l~ti i 7, I_ .-2 said to be of a clsrte,in  type.

The following types of simple val.*xes are distinguished:

integer: t.lqe \rai~lc is a 32 bit integer,

real: the value is a 3-7 bi.t floating point number,

Long real: the value is a 64 bit floating point number,

complex: the value is a compl.ex number composed of two
numbers of type real,,I-. L"O

5



L

c o m p l e x :long the value is a complex number composed of two
long real numbers,

logical: the value is a logical value,

bits: the value is a linear sequence of 32 bits,

string: the value is a linear sequence of at most 256 char-
acters,

reference: the value is a reference to a record.

The following types of structured values are distinguished:

array: the value is an ordered set of values, all of identi-
cal simple type, -

record: the value is an ordered set of simple values.

A procedure may yield a value, in which case it is said to be a

function procedure, or it may notlyield aBv@tie, in whii3h c&se it is

called a proper procedure. The value of a function procedure is de-

fined as the value which results from the execution of the procedure

body (cf. 6.2.2.).

Subsequently, the reference denotation of constants is defined.

The reference denotation of any constant consists of a sequence of

characters. This, however, does not imply that the value of the de-

noted constant is a sequence of characters, nor that it has the pro-

perties of a sequence of characters, except, of course, in the case

of strings.

4.1. Numbers

4.1.1. Syntax

<long complex number> : := <complex number>L

<complex number> ::= <imaginary number>

<imaginary number> ::= <real number>1 1 <integer number>1

10
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c-

-

L

i.

i

!

<long real number> ::= <real number>L 1 <integer number>L

<real number> : := <unscaled reaV 1 <unscaled real> <scale factor> 1

<integer number> <scale factor> 1 <scale factor>

<unscaled real> ::= <integer number>
l <integer number> 1

*<integer number> I <integer number> .

<scale factor> : := ’ <integer number> 1 ‘<sig@ <integer number>

<integer number> ::= <digiti 1 <integer number> <digiW

<sigr+ ::= + 1 -

4.~2. Semantics

Numbers are interpreted according to the conventional decimal

notation. A scale factor denotes an integral power of 10 which is

multiplied by the unscaled real or integer number preceding it. Each

number has a uniquely defined type. (Note that all ~3 number% are

unsigned.)

4.1.39 Examples

1 05 11

0100 1’3 0~671
3.1416 6.02486'+23 1IL

2.718281828459045235360287L 2.3~6

4~. Logical Values_

4.2.~ Syntax

<logical value> ::= true

k-3. Bit Sequences

4.3.1. Syntax

I false

<bit sequence> ::= # <hex digi-t> 1 <bit sequence, <hex digit>

<hex digiD ::= 0/~~21jj4~5/6~7j8~PjA~B~

CIDIEIF

11
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Note that 2 1 O.. 1 F correapQn&s  to 21o 1 . . . 1 ~5~~.

4.3.2. Semantics

The number of bits in a bit sequence is 32 or 8 hex di&itja... %!he

bit sequence is always represented by a 32 bit word with the specified

bit sequence right justified in the word and zeros filled in eon the

left.

4.3.3. Examples

L

#4F = 0000 0000 0000 0000 0000 0000 0100 1111

#9 = 0000 0000 0000 0000 0000 0000 0000 1001

4.4. Strings

4.4.1. Syntax

<strin@= ::= "<sequence of characterS>"

4.4.2. Semantics

Strings consist of any sequence of (at mast 256) characters ac-

cepted by the System 360 enclosed by ", the string quote, If the

string quote appears in the sequence of characters it must be imme-

diately followed by a second string quote which is then ignored. The

number of characters in a string is said to Be the length of the

string.

4.4.3. Examples

” JOJSN”

'WW is the string of length 1 csnsiating  of the string

quote.

12



4.5. References

4.5.1. Syntax

<null reference3 : := nullL

4.5.2. Semantics

The reference value null fails to designate a record; if a refer-

ence expression occurring in a field designator (cf. 6.1.) has this

value, then the field designator is undefined.

50 DECLARATIONS

Declarations serve to associate identifiers with the quantities

used in the program, to attribute certain permanent properties to

these quantities (e.g. type, structure), and to determine their scope.

The quantities declared by declarations are simple variables, arrays,

procedures and record classes.

Upon exit from a block, all quantities declared or defined within

that block lose their value and significance (cf. 7l.2. and 7.4.2.):

Syntax:

- Cdeclaratioti : :31 '<simple variable declaration> 1 CT array

declaratiom 1 <procedure declaratiorP I

<record class declaratioo

5 .l. Simple Variable Declarations

5.1.1. Syntax

<simple variable declaratio0 : := <simple type> <identifier list=>

<simple type+ ::= inte,ger I real I long real I complex I long

complex I logical 1 bits 1 bits (32) 1

13



string I string (<integer>) 1 reference

(<record class identifier list>)

<record class identifier lis0 : := <record class identifier> 1

<record class identifier list> ,

<record class identifier>

5.1.2. Semantics

Each identifier of the identifier list is associated with a

,variable which is declared to be of the indicated type. A variable is

called a simple variable, if its value is simple (cf. Section 4). If

a variable is declared to be of a certain type, then this implies that

only values which are assignment compatible with this type (cf. 7.2.2.)

can be assigned to it. It is understood that the value of a variable

is equal to the value of the expression most recently assigned to it.

A variable of type bits is always of length 32 whether or not

the declaration specification is included.

A variable of type string has a length equal to the unsigned

integer in the declaration specification. If the simple type is

given only as string, the length of the variable is 16 characters.

A variable of type reference may refer only to record& of the

record classes whose identifiers-appear in the record class identi-

fier list of the reference declaration specification.

integer I, J, K, M, N

real X, Y, Z

long complex C

Llogical

bits G, H

14
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i

t

L

strine (10) S, T '

reference (PERSON) JACK> JILL

5.2, Array Declarations

‘j 2.1, Syntax

<r array declaratiora> X= <simple type array <identifier list>

(<bound pair list>)

<bound pair lists gg= <bound pair> I<bound pair list>,<bound

pair> _

<bound pair> g := <lower bound> :: <upper bow?@

<lower bou.n& ; := <integer expressio*

<upper bound> ; g= <integer expressio0

5,2.2, Semantics

Each identifier of the identifier list of an array declaration is

associated with a variable which is declared to be of type array,A

variable of type array is an ordered set of variables whose -type% the

@mple type preceding the symbol array, The dimension of the array is..# ,

the number of.entries in the bound pair list,

Every element of an arrayis identified by a list of indices.

The indices are the integers between and including the values of the

lower bound and the upper bound, krery expression in the bound pair

list is evaluated exactly once upon entry to the block in which the

declaration occurs. The bound pain zpressiorns can depend only on

variables and procedures global to the block in which the declaration

occurs Q In order to be valid, for every bound pair, the value of' the

upper bound musJ-L, not be less than the value of the lower bound.

5s2& Examples

integer array H(l::lOO)



real. array A, B’l: :&I, 1: :iV;

string (12) array STREET, TOWE, CITY ( J: :K * 1-I

4
,I  .5. Procedure Declarations ’

5 l 3.1. Syntax

<procedure declaratioo : := <proper procedure declaratio,r>  1

<Y function procedure declarat iom

<pr,oper procedure declaratiori, : : - procedur e <procedure heading>;

<proper procedure bodp

<3 function procedure declaration> : := <simple type> procedure

<procedure  headinp;

<g function procedure bodp

<proper procedure body> : := <statement>

<T function procedure bodp : t= <T expressiora 1 <block body9

43 expressior@  endo-
<procedure headin@ : : = <ident if ier> 1 <ident if ie3 (<formal

parameter list;> J

<formal parameter list> : := <formal parameter segment> 1

<formal parameter lis+ ; <formal

parameter segment>

<formal parameter segmenti : := <formal type> <identifier listi 1

<formal array parameter>

<formal type> : : = <simple type> 1 <simple type> value 1 <simple

type> result 1 <simple type> value result I

<simple type> procedure 1 procedure- -  :  -me-
<formal array parameter> : := <simple type array <identifier

list> j<dimension  specificatiom)

<dimension specif icat io@ 2 := it= 1 <dimension specificatioti , *

5 Yj.2. Semantics

A procedure declaration associates the procedure body with the

identifier immediately following the symbol procedure. The principal



part of the procedure declaration is the procedure body. Other parts

of the block in whose heading the procedure is declared can then cause

this procedure body to be executed or evaluated. A proper procedure

is activated by a procedure statement (cf. 7.3.), a function procedure

by a function designator (cf. 6.2.). Associated with the procedure

body is a heading containing the procedure identifier and possibly a

list of formal parameters.

5.3.2.1. Type specification of formal parameters. All formal para-

meters of a formal parameter segment are of the same indicated type.

The type must be such that the replacement of the formal parameter by

the actual parameter of this specified type leads to correct ALGOL W

expressions and statements (cf. 7.3.2.).

5.3.2.2. The effect of the symbols value and result appearing in a

farmal type is explained by the following rule, which is applied to

the procedure body before the procedure is invoked:

(1) The procedure body is enclosed by the symbols be,gin, and end

if it is not already enclosed by these symbols;

(2) For every formal parameter whose formal type contains the

symbol value or result (or both),

( >a a declaration followed by a semicolon is inserted after

the first begin of the procedure body, with a simple

type as indicated in the formal type, and with an iden-

tifier different from any identifier valid at the place

of the declaration.

(b) throughout the procedure body, every occurrence of the

17
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formal parameter identifier is replaced by the identifier

defined in step 2a;

(3) If the formal type contains the symbol value, an assignment

statement (cf. 7.2.) followed by a semicolon is inserted

after the declarations of the procedure body. Its left part

contains the identifier defined in step 2a, and its expresm

sion consists of the formal parameter identifier. The sym-

bol value is then deleted;-

(4) If the formal type contains the symbol result, an assignment

statement preceded by a semicolon is inserted before the

symbol end which terminates a proper procedure body. In

the case of a function procedure, an assignment statement

is inserted after the final expres-

sion of the function procedure body. Its left part contains

the formal parameter identifier, and its expression consists

of the identifier defined in step 2a. The symbol result is

then deleted.

5.3.2.3. Specification of array dimensions. The number of "*"'s

appearing in the formal array specification is the dimension of the

array parameter.

5 l 3*3* Examples

procedure INCREMENT; X := X+1

real procedure MAX (real value X, Y);- -
if X < Y then Y else X

18



procedure COPY (reai array U, V (*,*); integer value A, B);<- ----
for I :- 1 until A do- - - -
for J z-s:- - 1 until B do U(I,J) := V(I,J)- - - -_

real procedure HORNER (real array A (*); integer value N;- - -  - -
real value X);__D_-
begin real S; S :- 0;- -

for I :=: 0 until N do S := S * X 9 A(1);

S

end

long real procedure SUM (integer K, N; long real X);- - - -
begin long real Y; Y := 0; K :- N;

while K > = 1 dc

begin Y := Y +X; K := K - 1

end;

Y

end

reference (PERSON) procedure YOUNGESTUNCEE (reference (PERSON) R);w--m
begin reference (PERSON) P, M;

'P := YOUNGESTOFFSPRING  (FATHER (FATHER (R)));

while- - (P 1 = null)- - and (-I MALE (P)) or

(P = FATHER (R))'

P :- ELDERSIBLING (P);

M := YOUNGESTOFFSPRING (MOTHER (MOTHER (R)));

while (M 1 = null) and (1 MALE (M)) do- -  -
M ;= ELDERSIBLING (M);

if P = null then M else- - - -
if M L= null then P else- - - -
if AGE(P) < AGE(M) then P else ML -ww - -

end

19



5 *4 e Record Class Declarations

5,4.X.: Syntax

<record class declaratioe z := record <identifier> (<field list>) *

<field list> z := <simple variable declaratio0  1 <field list> ;

<simple variable declaration>

5.420 Semantics

A record class declaration serves to define the structural pro-

perties of records belonging to the class The principal constituent

of a record class declaration is a sequence of simple variable declara-

tions which define the fields and their simple types for the records

of this class and associate identifiers with the individual fieldso

A record class identifier can be used in a record designator (cf. 6/j'.)

to construct a new record of the given classa

5 e4.3. Examples

record NODE (reference (NODE) LE F T, RIGHT)

record PERSON (string NAME; integer AGE; logical MALE;._
reference (PERSON) FATHER, MOTHER,, YOUNGESTOFFFSPRIIYG~

ELDERSIBLING)

6c EXPRESSIONS

Expressions are rules which specify how new values are computed
1

from existing ones. These new values are obtained by performing the

operations indicated by the operators on the values of the operands.

Several simple types of expressions are distinguished. Their struc-

6 ture is defined by the following rules, in which the symbol 1 h&s to

20



be repl'aced  consistently as described in Section 1) and where the

triplets JO, Tl, r2 have to be either all three replaced by the same

one of the; words

logical

bit

string

reference

or by any combfnation  of words as indicated by the following table,

which yields JO given 7' 1 and 12:

integer integer real complex

real real real complex

complex complex complex complex

TO has the quality "long" if either both Jl and 72 have that

quality, or if one has the quality and the other is "integer"".

Syntax:

CT expression> :r= <simple J expressioti 1 <case clause

(<Y expression list>)

<TO expression> ::= <if clause> <simple Jl expressio*  else

<Y2 expressioti

- <3 expression list>- ::= <J expressiorD

<Jo expression list> ::= <IL expression 1isO p 672 expression>

<if &W ' : t= g <logicai expressior+  then .

<case clause> g:SZ case <integer expressiorB g

The operands are either constants, variables or function de‘signa-

tars or other expressions between parentheses, ,The evaluation of

. operands other than constants may involve smaller units of action such

as the evaluation of other expressions or the execution of statements,,

21
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The value of an expression between parentheses is obtained by evaluating

that expression. If an operator has two operands, then these operands

may be evaluated in any order with the exception of the logical operators

discussed in 6J~2~2. The construction

<if clause> <simple Yl expression> else G2 expression>

causes the selection and evaluation of an expression on the basis of

the current value of the logical expression contained in the if clause.

If this value is true , the simple expression following the if clause

is selected, if the value is false J the expression following else is

selected. If 71 and I2 are simple type string, both string expressions

must have the same length. The construction

<case

causes the

expression

clause> (B expression list>)

selection of the expression whose ordinal number in the

list is equal to the current value of the integer expression

contained in the case clause. In order that the case expression be

defined, the current value of this expression must be the ordinal number

of some expression in the expression list@ If S is simple type string,

all the string expressions must have the same length.

6.1. Variables

6,l.l. Syntax

<simple Y variable> ::= 0 variable identifier> 1 a field designator> 1

G' array designator>

avariable> ::= Gimple Y variable>

<string variable> z:= <substring designator>

a field designator> ::= <=7 field identifier> (<reference expressioli>)

a array designator> ::= G array identifier> (<subscript list;>)

<subscript list> ::= <subscript> 1 <subscript list>, <subscript>

<subscript> ::= <integer expressionS

22
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6.1.2. Semantics

An array designator denotes the variable whose indices are the

current values of the expressions in the subscript list. The value of

each subscript must lie within the declared bounds for that subscript

position.

A field designator designates a field in the record referred to

by its reference expression. The simple type of the field designator

is defined by the declaration of that field identifier in the record

class designated by the reference expression of the field designator

(cf. 5.4.).

6.1.3. Examples

X A(I) M&J, I-J)

FATHER (JACK) MCTHER(FATHER(JILL))

6.2. Function Designators

6.2.1. Syntax

<r function designator> : := ,<T function identifier> 1 <Zf function

identifier> (<actual parameter list7)

6.2~~ Semantics .

A function designator defines a value which can be obtained by a

process performed in the following steps:

Step 1. A copy is made of the body of the function procedure

whose procedure identifier is given by the function designator

and of the actual parameters of the latter.

steps 2, 3, 4, As specified in 7.3Z.

23
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Step 5. The copy of the function procedure body, modified as in-

dicated in steps 2-4, is executed, The value of the function

designator is the value of the expression which constitutes or is

part of the modified function procedure body. The simple type

of the function designator is. the simple type in the corresponding

function procedure

6.2.3. Examples

MAX (XH2,Y3-++

declaration.

2)
SUM (I, 100, H(1))

SUM (I, M, SUM (J, N, A(1j.J)))

YOUNGESTUNCLE (JILL)

SUM ((I, 10, x(1) * Y(I))

HORNER (X, 10, 2.7)

6.3. Arithmetic Expressions

6.3.1. Syntax

In any of the following rules, every occurrence of the symbol T

must be systematically replaced by one of the following words (or

word paifs):

C

integer .

real

long real

complex

long complex

The rules governing the replacement

given in 6.3.2.

<simple r expression> : ;= 6r

of the symbols To, tr1 and T2 are

term@ 1 + <r term 1 - <3" terD



i
1
1

<simple To expression> :': = ~i..mple 7 1 expressiom + d2 ter-0

<simple r- expressioui> -- <3

6s term> 4 factor>
2
term

: ;z

do term> ;: lzz <r-1 t?rn!, s tJ factor;,"

do term> E E = d1 ter.m> : d2 factor;,

<integer terrri, ::- <integer term> div-u_, <integer factor> 1

<integer terti rem <integer factor>cm-,
<Jg factor> ZE= <To primary> 1 <rl factor> 4446 <integer primary3

<To primary> ::- abs 6"s--M
<Jg primary>

I primary> I ,e <Jl number>

z ;z long d1 primarp..-Be-
<To primary> 00=,* 0 short <Tl pr&-nary>--- .=

6r primary> ;:= -0 1iariab;0 1 <T function designator> 1

(<T express~ori>)  I 4 number>

<integer primary> ::=. <control identifier>

6.3.2, Semantics

An arithmetic expression  12 a rule for computing a number.

According to its simple type 4t is called an integer expression,

real expression, long red1 expression, complex expression, or long

complex expression.

6.3.2.~ The operators +, G-J 'I, ZLiPlti ,I ha\/? the conventional meanings

of addition, subtraction, .multip:!lcdtion and division. In the rele-

vant syntactic rules of 603.~. the S~~~DO~S  T
0’ 5 and r2 have to be re-

placed by any combination of wozds according to the following table

which indicates To for any combina$icn of Tl and Y
2'

Operators + I =

x 1 integer real complex

inf,eger

real

complex

integer reaL complex

real real complex

compieu complex complex

25



30 has the quality "long" if both T1 and y2 have the quality

"long", or if one has the quality "long" and the other is "integer".

Operator *

--
complex

integer integer long real long complex

real long real long real long complex

complex long complex long complex long complex

I7, or ?'9 having the quality "long" does not affect the type of
I L

the result.

Operator /

integer

real

complex

integer real complex

real real complex

real real complex

complex complex complex

To has the quality "long" if both Jl and J, have the quality

"long", or if one has the quality "long" and the other is "integer".

6.3.2.2. The operator "-" standing as the first symbol of a simple

expression denotes the monadic operation of sign inversion. The type

of the result is the type of the operand. The operator "+" standing

as the first symbol of a simple expression denotes the monadic opera-

tion of identity.
/

6.3.2.3. The operator div is mathematically defined (for B # 0) as

A div B = SGN (A x B > X D (abs A, abs B > (cf. 6.3.2.6.)

26



where the function procedures SGN and D are de&red as

integer procedure SGN (integer value A);

if A < 0 then -1 else 1;

integer procedure D (integer value A;,B);

if A < B then 0 else ,D(A-B, B) + 1

6.3.2.4. The operator rem (remainder) is mathematically defined as

A rem B = A - (A div B) X B

6.3a2.5 e The operator +H denotes exponentiation of the first operand

to the power of the second operand. In the relevant syntactic rule of

6.3,~ the symbols To and rl are to be replaced by any of the follow--

ing combinations of words:

real integer

real real

complex complex

To has the quality "long" if and only if II does,

6e302.6. The monadic operator abs yields the absolute value or modulus

of the operand. In the relevant syntactic rule of 6.3~ the symbols 3'G

and rI have to be replaced by any of the following combinations of words:

., kk

If rl has the quality "long", then so does Q.

27



6.3.2.7. Precision of arithmetic. If the result of an arithmetic

operation is of simple type real, complex_, long real, or long complex

then it is the mathematically understood result of the operation per-

formed on operands which may deviate from actual operands.

In the relevant syntactic rules of 6.3.1. the symbols Jo and 7
1

must be replaced by any of the following combinations of words (or

word pairs):

Operator long

Operator short

L - ”
6.3.3. Examples

_ C + A(1) * $(I) _

mp (-i/(2 * SIGMA)) / SqRT- (2 * SIGMA)

6.4. Logic+ Expressionsc

6X.1. Syntax

In the following rules for <relation> the symbols Jo and rl must

either be identically replaced by any one of the following words:

28



bit

string

reference

or by any of the words from:

complex

long complex

real

long real

integer

and the symbols 5, or T'
3
must be identically replaced by string or

must be replaced by any of real, long real, integerd

<simple logical expressiorD : :E <logical element> 1 <relation>

<logical element> : := <logical terrD 1 <logical element;> or

<logical term

<logical terti : := <logical factor> 1 <logical ter0 and

<logical factor>

<logical factor> : :z.z <logical primary=> f ~Clogical  primarp

<logical primar* : := <logical value 1 <logical variable 1

<logical function designator> 1

(<logical expressio*)

CrelatiorD : :s <simple To expressi <equality operator>

<+mple T1 expressi ) <logical elemen-

Cequaiitykperator>  <logical element> 1

<simple reference expressior3 is

<record class identifier> 1

<simple T, expressioti <relational operator>

<simple JL expressioG
3

<relational operator> ::=c I<= I>= I>

<equality operator> ::= = 1 7 =

6.4.2. Semantics

A logica?,.  expression is a rule for computing a logical. value.

29
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6.4.2.1. The relational operators represent algebraic ordering for

arithmetic arguments and EBCDIC ordering for string arguments. If two

strings of unequal length are compared, the shorter string is extended

to the right by characters less than any possible string character,

The relational operators yield the logical value true if the relation

is satisfied for the values of the two operands; false otherwise0 Two

references are equal if and only if they are both null* or both refer

to the same record. Two strings are equal if and only if they have

the same length and the same ordered-sequence of characters.

6.4.2.2. The operators 1 (not), and, and 2, operating on logical

values, are defined by the following equivalences:

IX

X and Y if X thenv -
XZY ifX then

6.4.3. Examples

PorQ

(X C Y) and (Y C Z)

false else true- - -
Y else false- -
true else Y- -

YOUNGESTOFFSPRING (JACK) 1 = null

FATHER (JILL) is PERSON

6.5. Bit Expressions .

6.5.1. Syntax

<simple bit expression> ::= <bit ter@ 1 <simple bit expression>

or <bit terrrZl

Chit term> ::= Chit factor> Tait term> and chit factor>

<bit factor> ::= Cbit secondary> 1 1 Cbitcondary>

Cbit secondary> ::= <bit primary> 1 <bit secondary> s&

<integer primary> 1 Chit secondary> shr

<integer primary>

<bit primary> ::= <bit sequence 1 Cbit variablti 1 Chit

function designator> 1 (<bit expressioti)

30



6.x.2. Semantics

A bit expression is a rule for computing a bit sequence.

The operators and, or, and 1 produce a result of type bits, every

bit being dependent on the corresponding bits in the operand(s) as

follows:

X Y 1x X and Y XSY

0 0 1 0 0 -

0 1 1 - 0 1

1 0 0 0 I

1 1
I

0 1 1

The operators shl and shr denote the shifting operation to the

left and to the right respectively by the number of bit positions in-

dicated by the absolute value of the integer Primary,,  Vacated bit,

positions to the right or left respectively are assigned the bit value

0.

6.5.3. .Examples

G and H s #38

G and 1 (H or G) shr 8.

6.6. String Expressions

6.6.1. Syntax

<simple string expression> ::= <string primary>

<string primary> ::= <strin@ 1 <string variable> 1 <string

function designator> 1 (Cstring expression>)

<sub&ring designator> :t= <simple string variable>

(<integer expression 1 <integer: number>)
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6.6.2. Semantics

A string expression is a rule for computing a string (se,quence  of

characters).

6.602.1. A substring designator denotes a sequence of characters of

the string designated by the string variable. The integer expression

preceding the a selects the starting character of the sequence. The

value of the expression indicates the position in the string variable.

'The value must be greater than or equal to 0 and less than the declared

length of the string variable0 The first character of the string has

position 0. The integer number following the 0 indicates the length

of the selected sequence and is the length of the string expressions

The sum of the integer expression and the integer number must be less

than or equal to the declared length of the string variable0

6.6.30 Example

string (10) S;

s (413)
S (WJ'I1)

string (10) array T (l::m,k:n);

T (426) (3U 5)

6.79 Reference Expressions

607010 Syntax

<simple reference expression> ::= <null reference', I <reference

variabl+ 1 <reference function

designator> 1 <record designator> 1

(<reference expression2)
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<record designator> ; gz <record class identifier> I <record

class identifier> (<expression list>]

<expression listi z- <7 expresslorD 1 <expression list>,

<J exprzssiori,

6.7.2. Semantics

A reference expression is a rule for computing a reference to a

record. All simple reference expressions in a reference expression

must be of the same record c-bass.

The value of a record designator is the reference to a newly

created record belonging to the designated record class. If the

record designator contains an expression list, then the values of the

expressions are assigned to the fields of the new record. The entries

in the e.xpressi,on  list are taken in the same order as the fields in

the record class declaration, and the simple types of the fields must

be assignment compatible with the simple types of the expressions

(cf. 7.2.2,).

6.7.3. Example

PERSON ("CAROL", 0, false,Ye- JACK, JILL, null, YOUNGESTOFFSPRING

( JA CK)) .

4

6.8, Precedence of Operatorss_‘

The syntax of 6.3.1., 6.4,1., and 6a5.1. implies the following

hierarchy of operator precedences:

L
low J short, absY I-_--D
shl, shr, Qk-.

1

*, /, div, rem, and- _Y -
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Example

A = B and C is equivalent to A = (B and C)

C

7* STATEMENTS

A statement denotes a unit of action. By the execution of a

statement is meant the performance of this unit of action,which  may

consist of smaller units of action such as the evaluation of expres-

sions or the execution of other statements.

Syntax:

<progr& : := <blocB .

<statementi  ::= <simple statement> 1 <iterative statement> 1

<if statement> 1 <case statement>

<simple statement> : : = <bloc& 1 <y assignment statement> 1

<emptp 1 <procedure statement> 1

<goto statementi

7.1. Blocks

7.1.1. Syntax

<blocti :: = <block bodyP <statementi end

<block-body? : := <block head> 1 <block body> <statemenD; I

<block body? <label definitiorD

<block head> ::= begin 1 <block head> <declaration> ;
L <label definitioe : := <identifier> :

1
L 7.1.2. Semantics

Every block introduces a new level of nomenclature. This is

realized by execution of the block in the following steps:



L

step 1. If an identifier, say A, defined in the block head or in

a label definition of the block body is already defined at the

place from which the block is entered, then every occurrence of

that identifier, A9 within the block except foroccurrence in

array bound expressions is systematically replaced by another

identifier, say APRIME,, which is defined neither within the

block nor at the place from which the block is entered.
L

Step 2, If the declarations of the block contain array bound

c

L-.

L

expressions,then  these expressions are evaluated,

Step 3* Execution of the statements contained in the block body

begins with the execution of the first statement following the

block head.

After execution of the last statement of the block body (unless

it is a goto statement) a block exit occurs 9 and the statement follow-

ing the entire block is executed.

7.1.3e Example

begin real U;

u x;x;=

e n d

:= Y; Y := 2; z := u

7,2, Assignment Statements

7.2.1. Syntax

In the following

words as indicated in

type TO is assignment

rules the symbols TO and Jl must be replaced by

Section 1, subject to the restriction that the

compatible with the type rl as defined in 7&Z!,
c
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CT0 assignment statemen- ::= GO left part> (rl expression> ]

GO left par-D Cfl assignment

statemen-

c7 left parW ::= G' variable> :=

7.2.2. Semantics

The execution of a simple assignment statement

GO assignment statemen. c:= a0 left part> 61 expressionS

causes the assignment of the value of the expression to the variable.

If a shorter string is to be assigned to a longer one, the shorter

string is first extended to the right with blanks until the lengths are

equal. In a multiple assignment statement

(Q0
assignment statement> : :-- GO left par-0 Gl assignment

statemenD)

the assignments are performed from right to left. The simple type of

each left part variable must be assignment compatible with the simple

type of the expression or assignment variable immediately to the right.

A simple type To is said to be assignment compatible with a simple

type Yl if either

(1) the two types are identical (except that if To and 71 are

string, the length of the To variable must be greater than

or equal to the length of the Tl expression or assignment), or

(2) q) is real or long real, and 7, is integer, real or long

o rreal

(3) “IO is complex or long complex, and Y 1
is integer, real,1-

long real, complex or long complex.

In the case of a reference, the reference to be assigned must refer

to a record of the class specified by the record class identifier asso-

ciated with the reference variable in its declaration.
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7.2.3. Examples

Z := AGE(JACK) :- 28

X ;= Y + abs Z

C :=I+X+C

P := X-l=Y

7.3. Procedure Statements

7.3.1. Syntax

<procedure statement> ::= <procedure identifier> 1 <procedure

identifier:>  (<actual parameter list>)

<actual parameter listi z:- <actual parameter> 1 <actual para-

meter list> , <actual parameter>

<actual parameter> : :=- <T expressioe I <statement> 1 <y subarray

designator> I <procedure identifier> 1

<T function identifier9

<T subarray designator:> :, := <Y array identifier> I -6 array

identifier> (<subarray designator

list>)

<subarray designator list> ::= <subscrip- I * I Csubarray

designator lisi>,<subscripti  1

<subarray designator lis"t>,*

7.3.2- Semantics

The execution of a procedure statement is equivaient to a process

performed in the following steps: -

Step 1. A copy is made of the body of the proper procedure whose

procedure identifier is given by the procedure statement, and of

the actual parameters of the latter.

L
Step 2. If the procedure body is a block, then a systematic

change of identifiers in its copy is performed as specified by
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step 1 0f 7.1.2.

Step 3. The copies of the actual parameters are treated in an

,,
L

undefined order as follows: Ff the copy is an expression differ-

ent from a variable, then it is enclosed by a pair of parentheses,

L or if it is a statement it is enclosed by the symbols begin andLi

end.
i

Step 4. In the copy of the procedure body every occurrence of an
t
i identifier identifying a formal parameter is repLaced by the copy

of the corresponding actual parameter (cf. 7.3.2.l.). En order

i for the process to be defined, these replacements must lead to

correct ALGOL W expressions and statements.

Step 5. The copy of the procedure body, modified as indicated in

steps 2-4, is executed.

I

L-
7.3.2.1. ActuaPformal correspondence. The correspondence between

the actual parameters and the form& parameters is estabi.lshed as

i follows: The actual parameter list of the procedure statement (or

of the function designator) must have the same number of enr,rxes as

the formal parameter list of the procedure declaration heading. The

correspondence is obtained by takjng the entries of these two iists

in the same order.

L
7.3.2.2. Formal specifications. If a'formal parameter is specified

1 by value, then the formal type must be assignment compatible with the

type of the actual parameter. If it is specified as result, then the1-y

i type of the actual parmek must be assignment compatible with the
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formal type. In all other cases, the types must be identical. If an

actual parameter is a statement, then the specification of its corre-

i

sponding formal parameter must be procedure.

7.3.2.3. Subarray designators. A complete array may be passed to a

L procedure by specifying the name of the array if the number of sub-

scripts of the actual parameter equals the number of subscripts of

the corresponding formal parameter. If the actual array parameter has

,
L

more subscripts than the corresponding formal parameter, enough sub-

1 scripts must be specified by integer -expressions so that the number of

i *'s appearing in the subarray  designator equals the number of sub-

i scripts of the corresponding formal parameter. The subscript positions
t

L of the formal array designator are matched with the positions with Jc's

c
in the subarray designator in the order they appear.

7*3*3* Examples

i INCREMENT

COPY (A, B, M, N)

L LNNHiPRODUCT (I, N, A(I,*), B(*,J)> I

c 7.4. Goto Statements

7.4.1. -Syntax

i

<goto statement> ::= goto <label identifier> I .g;o to <label

identifier>

i
7.4.2. Semantics

An identifier is called a label identifier if it stands as a

label.
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A goto statement determines that execution of the text be con&&n-

ued after the label definition of the label identifier. The ident iPI-

cation of that label definition is accomplished in the following stepg:

Step 1. If some label definition within the most recently rcti-

vated but not yet terminated block contains the label identifier,

then this is the designated label definition. Otherwise,

step 2, The execution of that block is considered as terminated

and Step 1 is taken as specified above.

L5’ If Statements

7.5 .l. Syntax

<if statement)- : := <if clause> <statement> I <if Claus0

<simple statement;> else <statemenD

<if clause> ;;= ir <logical expressiom  then

7 -5.2 l Semantics

The execution of if statements causes certain statements to be .

executed or skipped depending on the values of specified logical WC-

pressions. An if statement. of the form

<if clause <statement)

is executed in the following steps:

-Step 1. The logical expression in the if clause is evaluatcad,

Step 2. If the result of Step 1 is true, then the statement . .

following the if clause is executed. Otherwise step 2 causes

no action to be taken at all.
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An if statement of the form

<if clause <simple statement> else <statement>

is executed in the following steps:

Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of step 1 is true, then the sknple state-

ment following the if clause is executed. Otherwise the state-

ment following else is executed.

7-5-3. Examples

if X = Y then goto L

ifX< YthenU :=X else if Y < Z then U := Y else V := Z- -

7.6. Case Statements

7.6.1. Syntax

<case statement> : t= <r:ase clause begin <statement list> end

<statement list> ::= <statementi 1 <statement list> ; <statement>

<case clause ::= case <integer expressior9 of

7.6.2. Semantics
.I

The execution of a case statement proceeds in the following

steps:

Step 1. The expression of the case clause is evaluated.

Step 2. The statement whose ordinal number in the statement list

is equal to the value obtained in Step 1 is executed. In order

that the case statement be defined, the current value of the ex-

pression in the case clause must be the ordinal number of some
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statement of the statement list.

7.63, Examples

case I of

begin X := X + Y;

Y := Y + z;

z : =  z + x

end

case j of

begin H(1) := -H(I);

begin H(I-1) := H(I-1) + H(1); I :T I-l end;

begin H(I-1) := K(I-1) x H(I); I := I-l end;

begin H(H(I-1)) := H(1); I := I-2 end -

end

7870 Iterative Statements

7e7il Syntax

<iterative statement> : :r <for clause> <st. ternenD 1 <while

clause3 <statemenD

<for clause> ::= for <identifier> := <initial value>

step <increment> until <limit2 do 1 for

<identifier> := <initial value until <limiO

do 1 for <identifier> := <for lis'cs do- -.
<for list> : := <integer expression> 1 <for list> :, <integer

expression>

<initial value> ; := <integer expressi

<increinenD-  ::= <integer express&?>

<limit> ,':= <integer expressi

<while clause : := while <logical expressi do

7.7.2. Semantics

The iterative statement serves to express that a statement be
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executed repeatedly depending on certain conditions specified by a

for clause or a while clause. The statement following the for clause

or the while clause always acts as a block, whether it has the form of

a block or not. The value of the control identifier (the identifier

following for) cannot be changed by assignment within the controlled

statement.

(a) An iterative statement of the form

for <identifier> := El step E2 until E3 do <statemen

is exactly equivalent to the block

begin <statement-O>; <statement-P .*. ; <statement-L>;

. . . ; <statement-N> end

in the I
th

statement every occurrence of the control identifier

is replaced by the value of the expression (El + I X E2).

The index N of the last statement is determined by

N < (E3-El) / E2 < N+l. If N < 0, then it is understood that

the sequence is empty. The expressions El, E2, and E3 are

evaluated exactly once , namely before execution of <statement-O).

Therefore they can not depend on the control identifier.

(b) An iterative statement of the form

for <identifier> := El until E3 do <statement>

is exactly equivalent to the iterative statement

for <identifier> := El step 1 until E3 do <statemenD

(c) An iterative statement of the form

for <identifier> := El, E2, ..@ , EN do <statemen-

is exactly equivalent to the block
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begin <statement-D; <statement-a 0 @. <statement-I@  ; .OO

<statement-N> end

when in the Ith statement every occurrence of the control identifier

is replaced by the value of the expression 81,

(d) An iterative statement of the form

while E do <statement>

is exactly equivalent to

begin

L: if E then- -
begin <statemen+ ; goto L end

end

7 l 7*30 l3xamples

for V := 1 step 1 until N-l do S := S + A(U,V)-..

while (J> 0) and (CITI(J)  1 = S)do J := J-1

for I := x, x + 1, x + 39 x + 7 9 ml

7.8. Standard Procedures

The standard procedures differ from explicitiy declared procedures

in that they may have one or more parameters of mixed'simple type.

In the following descriptions r is to be replaced by any one of

integer

real

long real

complex

long complex

bit

string
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7.8.1. Read Statements

Implicit declaration heading:

procedure read (y result Xl, T result X2 . . . , 3' result X,);

procedure readon (y result Xl, 7' result X2 . . . , g result X,);

(where n 2 1)

Both read and readon designate free field read statements. The

quantities on the data cards must be separated  by one or more blank col-

umns . All 80 card columns can be used and quantities extending to col-

umn 80 on one card can be continued beginning in column 1 of the next

card. In addition to the numbers of 4.1., numbers of the following

syntactic forms are acceptable quantities on the data cards:

1) <sign> <T number>

where T is one of integer, real, long real, complex, long complex.

2) <sigrD <To number> <sigrD <Tl number>

where L7 0
is one of integer, real, long real, and Tl is one of

complex, long complex.

The quantities on the data cards are matched with the variables of

the variable list in order of appearance. The simple type of each quan-

tity read must be assignment compatible with the simple type of the

variable designated. The read statement begins scanning for the data

on the next card. The readon statement begins scanning for the data

where the last read or readon statement finished.

7..8.1.2. Examples

read (X,A(I))

for I := 1 until N do readon (A(I))
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7.8.2. Write Statements

Implicit declaration heading:

procedure write (T value Xl, T value X2, ..* , T value Xn);

(where n 2 1);

The values of the variables are output in the order they appear

in the variable list in a free field form described below. The first

field of each WRITE statement begins on a new line. If therr? 1; insuffi-
. .

cicnt space remaining on the 132 character print line for a new field,

that line is printed and the new-field starts at the beginning of a new

print line.

integer: righttjustified  in field of 14 characters followed by 2
blanks. Field size can be changed by assignment to Intfieldsize.

real: same as integer except the field size cannot be changed.

long real: right justified in field of 22 characters followed- -
by 2 blanks"

complex: two adjacent real fields always on the same line.

long complex: two long Y' .:,l fields adjacent always on the sameP -_-
line-

logical: TRUE or FALSE right justified in a field of 6 characters

followed by 2 blanks.

string: placed in a field large enough to contain the string

and may extend to a new line if the string is larger

than 132 :cllaractcrs.

bits: same as real.

reference: same as real.

8. STANDARD FUNCTIONS AND PREDECLARED IDENTIFIERS .

8.1. Standard Transfer Functions

Implicit declaration headings:
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integer procedure round (real value X);- -
integer procedure truncate (real value X);- -
integer procedure entier (real value X);- -
real procedure realpart (complex value X);

long real procedure.longrealpart (long complex value

real procedure imagpart (complex value X);

long real procedure longimagpart (long complex value

complex procedure imag (real value X);- -
comment complex number XI;

long complex procedure longimag (long real value X);- -
logical procedure odd (integer-value X);

bits procedure bitstring (integer value X);

comment binary representation of number X;

integer procedure number (bits value X);- -
comment integer with binary representation X;

integer procedure decode (string (1) value S);

comment numeric code of the character S;

string (1)procedure  code (integer value X);

a;

x>;

comment character wk=,e numeric code is X REM 256;

8.2. Standard Functions of &alysis

real

long

real

- long

real

long

real

long

procedure sin (real value X);- -
real procedure longsin (long real value X);PY
procedure cos (real value X):,- -
real procedure' longcos (long real value X);- -
procedure arctan (real value X);-_I__
comment -42 < arctan (X) < 1x/2;

real procedure longarctan (long real value X);- -
comment -n/2 < longarctan (X) < rr/2;

procedure In (real value X);- -
comment logarithm base e;

real procedure longln (long real value X);--P
comment logarithm base e;
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real

long

real

long

real

long

procedure log (real value X);- -

comment logarithm base 10;

real procedure longlog (long real value X);- -

comment logarithm base 10;-e
procedure exp (real value X);- -

real procedure longexp (long real value X); ;- -

procedure sqrt (real value X);- -
real procedure longsqrt (long real value X);- -

complex procedure complexsqrt (complex value X);

comment principal square root;

long complex procedure longcomplexsqrt (long complex value X);

comment principal square root;

8.3. Overflow and Underflow

8.3.1. Predeclared Variables

u n d e r f l o w ;logical

comment initialized to false. Set to true at occurrence

of a floating-pain: ,-underflow interrupt;

logical overflow;

comment initialized to false. Set to true at occurrence

of a floating-point or fixed-point overflow or divide-by?

zero interrupt;

8.3.2. Standard Message Function

integer procedure msglevel (integer value X);

comment The value of a system integer variable MSG controls

the number of underflow/overflow messages printed during

program execution. MSG is initialized to zero.

MSG = 0

No messages are printed.
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MSG > 0

Underflow and overflow messages are printed.

After each message is printed, MSG is decreased By 1.

MSG < 0

Overflow messages are printed. After each message

is printed, MSG is increased by 1.

Each message gives the type of interrupt and a source card number

near which the interrupt occurred.

Examples

OVERFLOW NEAR CARD 0023

UNDERFLOW NEAR CARD 0071

DN BY ZERO NEAR CARD 0372

The predeclared integer procedure msglevel is used to interro-

gate and to set the value of MSG. The old value of J%SG is the value

of the procedure msglevel, and the new value given to MSG is the

value of the argument of msglevel.

8.4. Output Field Sizes

integer intfieldsize;

comment indicates number of digits including minus sign if

any. Initialized to 1.4;. can be changed by &ss1men?5 state-

ment;

8.5. F u n c t i o nTime

integer procedure time (integer value X);

comment if X = 1, time is returned in 60~~s of a second,

If X = 2, time is printed in minutes, seconds and 60’~s of

a second and returned in 60~~s of a second.
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ALGOL w ERROR MESSAGES

I. PASS ONE MESSAGES

All Pass One messages appear on the first page following the pro-

gram listing. The message format is

CARD NO. (number) -- (message)

The (number) corresponds to the card number on which the error

was found. The (message) is one of-those listed below:

INCORRECT SPECIFTN syntactic entity of a declaration is

L
INCORRECT CONSTANT

incorrect, e.g. variable string length.

syntax error in number or bitstring.

MISSING END anEND needed to close block.

MISSING BEGIN

MISSING )

an attempt to close outer block be-

fore end of code.

) is needed.

ILLEGAL CHARACTER a character, not in a

unrecognizable.

MISSING END l program must conclude

quence END .

STRING LENGTH ERROR string is of 0 length

greater than 256.

BITS LENGTH ERROR bits constant denotes no bits or

more than 32 bits.

MISSING ( ( is needed.

COMPILER TABLE OVERFLOW terminating error - a

string, is

with the se-

or length

compile time

table has exceeded its bounds.



TOO MANi ERRORS the maximum ntiber of errors fo&P&as '

One records has been reached. Com-

pilation continues but mesawcs for

succeeding errors detected by Pass

One are suppressed.

ID LENGTH > 256 more than 256 characters in' identifier.

See also discussion of PR,CGRAM CHECK in IV.

II. PASS TWO MESSAGES

The format of Pass Two error messages is

(message), CARD NUMBER IS (number). CURRENT SYMBOL IS (incoming

symbol)

If a $STACK card is included anywhere in the source deck, the

SYNTAX ERROR message is followed by

STACK CONTAINS:

. (beginning of file)

<symbol-l>

.

.

<symbol-m (top of stack)

- The symbol names may differ-somewhat from the metasymbols of

the syntax.

If any Pass One or Pass Two errors occur, compilation is termi-

nated at the end of Pass Two.

INCORRECT SL?LE TYPE <number> <simple type of entity is impssper

as used. Number indicates explant-

tion on list of simple type errors.

2



ARRAY usq

IDENTIFIna.
CLASS

MISMATCHED

INCORRECTLY

MUST BERECORD
ID

PARAMJZTER

MULTIPLY-DEFINED
tifier7

a variable must be used here.

reference declaration is incorrect,

for& parameter does not correspond

to actual parameter.

SYMBOL <iden-
sy&bol,  defined AOre t&n , once

in a block.

UNDEFINED SYMBOL ( <identifier9

INCORRECT NUMBER
PlYRAMETERS

OF ACTUAL

INCORRECT DIMENSION

DATA AREA EXCEEDED

INCCRRECT NUMBER OF FIELDS

Il\'i'OMPATI.BLE STRING LENGTH

IKCMPATIBLE REFERENCES

BLOCKS NESTED TOO DEEP

-REFERENCE MUST REFER TO RECORD
CLASS

EXPRESSION MISSIrjG IN PROCEDURE
BODY

symbol is not declared or defined,

the number of actual

a procedure does, not

,of formal parameters

the procedure.

parameters to

equal the number

declared for

the array has appeared previously

with a different/number of dimensions..

too many declarations in the block.

the number 01 fields specified in a

record designator doe's not equal the

number of fields the declaration of

the record indicates.

length of assigned string is greater

than lerigth  of string assigned to,

record clas,s binding? are ikconsisterk* I

blocks qe z-i&ted-more than 8 levels. .

reference mu&be bound to a recork :

class.

body of typed procedure must end with.

an expression0
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R&ULT PABAMEpER MUST BE <T VAfc> the actual parameter corresponding

to a result formal parameter must

be a<?'VARIABL~.

PROCEDURE HEW LACKS SIMPLE TY&PE proper procedure ends with an ex-

pression.

<syM&2L-1=> mELATED TO <SYMBOL-a the symbol at the top of the stack

SYNTAX ERROR

i-

I

(<SYMBOL-I>) should not be followed

by the incoming symbol (<SYMBOL-&).

construction violates the rules of

the grammar. The input string is

skipped until the next END, ";",

BEGIN, or the end of the program.

More than one error message may be

t

F 25.
i 2%

71.

73*

74.

76.

77*
81.

84.
88.

93*

94.

95 l

generated for a single syntax error.

Simple Type Errors

Upper and lower bounds must be integer.

Upper and lower bounds must be integer.

Simple type of procedure and simple type of expression in pro-

cedure body do not agree.

Substring index must be integer. II

Variable before ((I must be string, procedure identifier, or array

identifier. . -

Substring length must be integer.

Field index must be reference or record class identifier.

Array subscript must be

Array subscript must be integer.

Actual parameters and formal parameters do not agree.

Actual parameters and formal parameters do not agree.

Expressions in if expression do not agre,e.

Expressions in case expression do not agree.

Expression in if clause must be logical. s

4
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98. Expressions in case expression do not agree,

99. Expression in case clause must be integer.

101. Arguments of = or I= do not agree.

102. Arguments of relational operators must be integer, real, or

long real.

103. Argument before is must be reference.

106. Argument of unary + must be arithmetic.

107 0

108.
. *

109 a

110.

112.

1170

118:

119.

120"

121.

123.

125 0

126.

i300

13c*

13: ^

13L.

148.

181.

182~.

108.

190 0

1y1.

1930I
195 o

197,;

Argument of unary - must be arithmetic.

Arguments of

Arguments'~oP

Arguments of

Record field

Arguments of

Arguments of

Arguments of

Arguments of

Arguments of

+ must be arithmetic.

- must be arithmetic.

or must be both logical or both bits.

must be assignment compatible with declaration.

* must be arithmetic.

/ must be arithmetic.

div must be integer.

rem must 'be integer.

and must be both logical or both bits.e.

Argument of -I must be logical or bits.

Exponent or shift quantiTCY  must be integer; expression to be

shifted must be bi ;.- -

Shift quantity must be _.__nteger; expression to be shFfted.must  be'

bits.

Actual parameter of standard function has incorrect simple type.

Argument of long must be integer, real, or complex.

Argument of short must be long real or a complex.
L,,r(;urnent  of abs must be arithmetic.v

.Record field must be assignment compatible with declaration.

Expression cannot be assigned to variable. .

Result of assignment cannot be as'sigricd to variable.

Limit expression in for clawe mist be integer.

.Expression in for list must be integer.

Assignment to for vaJri.able must be integer.

.Ekpression in for list must be integer.

Step element must be integer.

%presoion in wJ$&e clz+@e must be logical.

. . 5



c

iI

III. PASS a ERROR MESSAGES

The f'orm of Pass Three error messages is

*- (message)
*+X=-H NEAR CARD (number)

The number indicates the number of the card near which the error

occurred. The message may be

PRC$XAMSEGMENT OVERFLC%J

coMPILER STACK OVERFLOW constructs.nested too deeply,

CONSTANT POINTER TABLE TOO LARGE too many literals appear in a pro-'

the amount of code-generated for a

procedure bxceeds.4096 bytes.

cedure.

BLOCKS NESTED TOO DEEP

DATA SEGMENT OVEXVLQW

parameters in procedure call are nested,

too deeply; procedure calls in 'block

nested too deeply.

too many vwiables declared in the

block.

% RUN TIME ERROR MESSAGES

‘r The form of run error messagks is

i

RUN EBROR NEAB CARD (number) - (message)

SUBSTRING INDEXING sub&ring selected not within named

string.

CASE SELECTION INDEXING index of Case titatement or cas.e ex-

pression is less than 1 or greater

than ntiber of cases

ARRAY SUBSCRIPTING array subscxdpt not within de&red

bounds.

6



LOWER BOUND > UPPER BOUND

ARRAY TOO LARGE

lower bound is greater than upper

bound in array declaration.

The (n-l) dimensional array obtained

by deleting the right-most bound-

pair of the array being declared has

too many elements The maximum number

of elements allowed in this (n-l)

dimensional array is given below,

according to the declared type of

the array0

maximum # of
elements in
first (n-l)

type dimensions

logical, string 32767
integer, real 8191

bits, reference 8191

long real, complex 4095
long complex 2047

ASSIGNMENT TO NAME PARAMETER assignment to a formal name parameter

whose cczv'Psponding  actual parameter

is an expression, a literal, control

identifier,? or procedure name<>

DATA AREA OVERFLOW storage available for program execu-

tion has been exceeded.

PC.YJAL-FORWL PARAMETER MISMATCH the number of actual parameters in
IN FORMAL PROCEDURE CALL

a formal procedure call is different

from the number of formal parameters

in the called procedure, or the

parameters are not assignment

compatible0

RECORD STORAGE AREA OVERFLOW. no more storage exists for records.

7



LENGTH OF STRING INPUT

LOGICAL INPUT

NUMERICAL INPUT

RFFERENCE INPUT

string read is not assignment com-

patible with corresponding declared

string.

quantity corresponding to logical

quantity is not true or false.

numerical input not assignment com-

patible with specified quantity.

reference quantities cannot be read.

READER EOF

REFERENCE

f

L I/O ERROR

LINE ESTIMATE

F

a system control card has been

encountered during a read request.

the null reference has been used to

address a record, or a reference

bound to two or more record classes

was used to address a record class

to which it was not currently pointing.

see consultant

EXCEEDE33 line estimate on $ALGOL card is

exceeded.

TIME: ESTIMATE
I
i.
1
L

EXCEEDED time estimate on $ALGOL card is

exceeded.

Counts of certain exceptional conditions detected during program

compilation or execution are maintained. If any of these are non-zero,

they are listed after the post-compilation or post-execution elapsed

time message in the following format:

nnnn PROGRAM CHECK NO xx

The number of times the condition was detected (module 10000) is

given by nnnn; the nature of the condition is indicated by xx
.

according to the following table:

8



08 integer overflow

09 integer di;Tiision by zero

12 real exponent overflow

13 real exponent underflow

15 real division by zero

This counting is not affected by the value of MSG.

PRG PSW (16 hexidecimal digits) compiler error, see consultant

9
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The textbook Introduction to AFL by Baumanp,Feliciano, Bauer,. I
Samelaon describes the internationally recognized language &GdL 60”.

algorithm communication. ALGOL W can be viewed as an extension of‘

ALGOL.
l

Part I of these notes describes the differences between &m.ilrar

constructs of the two languages.
.

i
i

For clarity, Part I is numbered according to the sections of the

textbook. In general only differences are mentioned; items which  are

the same in both languages are usually not discussed.

i

Part II presents some of the details concerning the new felaturw

o-f AIGOL w, A complete syntactic and semantic description of these

constructs as well as of all othersin the language is available in

"AUKJL W Language Description".

i
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PART I: Differencea between AIGOL 60 and AIGOL W .

-

._-

1 . Basic Symbols of the Language

1.1. The basic symbols

* l.l,l. Letters ,

1 - Only tipper case letters abe used.

1.1.3.. Other symbols *

c-

+- ./ ?

:=
;

t

=<>

The following are different in the two languages. The

.

!

cbrrmpondence between the symbols is shown in the following

table:
I

i
AIGOL 60 AUOL W

L
10 I

*

no equivalent

V OR

2



I

I

L

1.
t

L

AIGOL 50 AIGOLW

A AND

u

f

one blank space

1=

<

>

: : or :: (cf. section 6.1 and 4.2.1)

no equivalent I #

All characters indicated for ALGOL W are on the IBM 029

key-punch,

The significance of spaces in ALGOL W will be discussed in

subsequent sections.

1.2, Numbers

A number is represented in its most general form with'a scale

factor to the base 10 as in cl nventional scien?;i?ic notation.

EXAMPLE: 3~64981’-4 means 30164981~~ -4

i'his is often called the floating point form,
Certain abbreviations

om'iting unessential parts are permissible.

EXAMPLES 77 317.092

551 0 5384

‘30 0.710

f -7 0

D -3 oogo123'+ol

126 9 04

04.71gs2

9.123'+1

2”.6

2.00-06

To represent a long floating point (cf. Section 2&l) number an

3



i

L

L

iI

EXAMPLES 771; 317.092L 126"  047;

In ALGOL W, complex numbers (short and long forms) may be used.

The imaginary part of a complex number is written as an unsigned real

number followed by an I.

EXAMPLES 41 4.81 4’-51

Long imaginary numbers are followed by an L.

EXAMPLE 4981~

Numbers may be written in a variety of equivalent forms.

EXAMPLE x?ok 3 ~2'6 E 1.2105 E 120000.0

No spaces may appear

an integer or the integer

point number must be less

within an unsigned number. The magnitude of

part before the decimal point in a floating

than or equal to 2147483647.  The magnitude

of a non-zero floating point r-umber must be between approximately

5,4x 10-79 and 7 x lO75 (l/l6 x 16-64 and (1-1-6~~)  X: 1663) D

lb30 Identifiers

A -letter followed by a sequence of letters and/or digits constitutes

an identifier, Identifiers may be as short, as one letter or as long

as 256 letters and digits.

Identifiers may be chosen freely and have no inherent meaning.

However, AIGOL W recognizes a set of reserved words which must not be

used as identifiers.



RESERVED WORDS

ABS

AND

NIRAY

BEGIN

BITS

CASZ.

COMMENT

COMPLEX

DIV

DQ /

EL9E

END

FALSE

FOR

GOT0

GO TO

IF

INTlX+ER

IS

LOGICAL

LONG

JJQLL

OF

OR

PROCEDURE

REAL

RECORD

REFEREYN"E

REM *

RESULT

SHL

SHORT

SHR

STEP

STRING

THEN

TRUE

UNTIL

WKLLE

The reserved word BOOLEAN can be used in pPace of LOGICAL.
Spaces

ire used to separate reserved words and identifiers from each other and

f:om numbers.

Certain identifiers are predefined for use by the programmer but

are not reserved words. Their meaning will be discussed later, Among

these are three input and output identifiera: READ, READON, WRITE,

(See Sections 2.2.2, and 2,5.)

1.4 Nonarithmetic symbols

The symbols which are printed in bold type in the text are usually

I
underlined in Qpewritten copy0 They are contained in the list of

reserved words (cf. Section 1.3) for ALGOL W.' They are not distinguished

5



in any other way but they must not be used for any purpose other than

that for which they are specifically intended. The symbol IXND, for

example, must not be used as an identifier.

2. Arithmetic Expressions

2.1. Numerical Expressions

The basic arithmetic operators of AIGOL W are

+ - * / ** DIV REM

EXAMPLES

7 DrV 3

17 REM 12

-1.2

3.1459. . c.

(3.47'-4 + 9.01'+1) / 4

9*8*?/(1*2*3)

(9 i- 2.7) / (-3)

(((1.5 * 3 - 4) * 3 + o.igQ) * 3 - 2.6'3) * 3

10 + 1.4 / (1 + 0.9 / (7 - 0.4 / 3))

The symbol * denotes multiplication while +H denotes exponentiation.

For instance, 4.5 ** 3 means 4.53 . The exponent must always be an

integer in ALGOL W. An integer to any exponent gives a real result.

EXAMPLES

ALGOL W form Conventional form

4.1 - 3 ** 2 4.1 - 32

(4.1 - 3) 3csc 2 (4.1 - 3)2

3p2 ** 2 + T-2 3.22 + 5.2

-4 ** 2 -42

6



AIGOL W form

(-4) ** 2

4*5/2**3

5 ** 2 * 3

Also notice

2**3%+4 i5

Conventional form

(23, 4

In ALGOL W the following two constructs are not allowed because

the exponent is a real number: -

3.2**(2 +5,2) and 2**(3**&

2.2,2. Assignment of numerical values through input

If the value of an identifier is to be provided by input it is

assumed that this value appears on a data card which is in the card

reader waiting to be read. The st&tement

READfiN (V) '

where V stands for variable identifier, reads the next number on the

current input card, If there are no more numbers on the current input

car-cl, s-ubsequent cards are read until a number is found. This statement

assigns the vai'ue of the number to the variable whose name is specified.

READ@ $,v,, 0 c 0 ,v,,

is equivalent to

READ#N (vl); READ$N (V,);...; READ$N (V ) .n

The constarits on the data cards are assigned in the same order as .‘.’

7



the vartable names in the READ$N statement, One or tievera numbers

may appear on a single card separated by one or more blank spaces with

column 80 of one card immediately followed by column 1 of the succeeding

card,

The statement

is similar to READtiN (V) except that scanning for the number begins on

a new input card.

The statement

i REIAD(V V V v >1' 2' 3'..".n
1i is equivalent to

t

1

READ (Vl); READ#N (V V29 3’..‘,y.J

Numbers are punched into data cards in the forms described in

Section 1.2, and may be prefixet-, by "-". Numbers corresponding to

variables of type integer must not contain decimal fractions or

scale parts-

EXAMPLES READ#N (A2)

- In this case the data card must contain at least one number,

say 1.2'j'g'-7 if A2 is not an integer variable,,

READ (B10,BllIBL2,B15);

The data cards must contain four numbers, say

3*4$-l 7* 149 825'1 9 if 3810, Bll, 1312 are not

integer variables, B15 may be an integer variable or a real

variable. One could spread these constants over several cards

if desired.



In general input read into the machine must be assignment compatible

with the corresponding variable (cf. Section 2.3.2).

2.3. Assignment of numerical values through expressions

Exponentiation ab (a-x"b)  lis defined by repeated multiplication if

b is a positive integer and by l/ a I Ib when b is negative. b must have

type integer. If one desires the result of AR where R is real, use

EXp (R * LN (A)).

2.3.1. Evaluation of expressions

1
1
i
i

The discussion in this paragraph of Baumann et. al. is corre&

However, *in ALGOL W the type of a resulting expression is defined for

each type and each operator. The type complex and the discussion of

the long forms is provided for completeness and may be ignored by

beginning programmers (cf. ALGOL W Language Description, Section 6.3). '- -

I: A + B , A - B

integer

real

complex

The result

integer real complex

integer real complex

real real complex

complex complex complex

las the quality "long" if both A and B have the quality

"long", or if one has the quality "long" and the other is integera

9



II: A*tg

I integer

integer

real

integer

long real

- ---

long real

long real

complex

long complex

long complex
lomplex 1 long complex long ComDlex

A or B having the quality "long" does not affect the resultant

type of the expression.

III: A/B

L
t real

complex

real

complex

real

complex

complex

complex

complex

i
i

The specifications  for the quality "long"  are those given for +

and - .

IV: A ** B

integer
I

real

real

I

real

complex complex

The result has the quality "long" if and only if A does.

10



v: ABS A means the "absolute value of A".

A I ABSA

integer

real

complex

integer

real

real

2.3.2, Type of the variable to which a value is assigned,

The assignment V := E is correct only if the type of E is

assignment compatible with V. That is, the type of V must be lower or

on the same level in the list below as the type of E.

integer

real, long real

complex, long complex

Several transfer functions are provided as standard functions

(cf. Section 2.4). For example, to change the type of expression E from

real to integer either ROUND(E), TRUNCATE(E) or ENTIER may be used.,

2.3.4. Multiple assignments

The assignment of t&e value of an expression can be extended to

several variables. As in ALGOL 60, the form in ALGOL W is

v1 := v2 := 0 e 0 := V :=
I1 E;

The multiple assignment statement is possible only if all the

variables occurring to the left of Vi:= are assignment compatible with

the type of the variable or expression to the immediate right of the :=,

11



2.4 Standard Functions

All the standard functions listed in this section are provided in

ALGOL W except sign and abs. ABS is a unary operator in AUOL W. In

addition the following standard functions are provided.

truncate(E) if E *:,I 0, then entier

if E < 0, then -entier

round(E) if E 2 0, then truncate (E + 0.5)

if E < 0, then truncate (E - 0.5)

log(E) the logarithm of E to the base 10

(not defined for E < 0)

time(E) if E = 1, elapsed time returned in 60th ‘S of a second

if E = 2, elapsed time returned in 60th 's of a second

and printed in minutes, seconds, and 60th 's of a

second

2,5. output

The identifier "print" should be replaced by "write" o ‘A.print

line-consists of 13.2 characters.

- EXAMPLES WRITE(E); WRITE(El,E2,.;.,En);

The format of the values of each type of variable is listed below:

integer right justified in field of 14 characters and

followed by two blanks, Field width can be

real

changed by assignment t@ INTZ~DSTZE,

same as integer except that field width is

invariant.

12



long real right justified in field of 22 characters- -

followed by 2 blanks.

complex two adjacent real fields.

lon6 complex two adjacent long real fields.- -

logical TRUE or FALSE right justified, in a field of

6 characters followed by 2 blanks.

string field large enough to contain the string and

continuing onto the next line if the string

is longer than 132 characters.

bits same as real0

In order to provide headings or labels for printed results, a

sequence of characters may be printed by replacing any expression in

the write statement by the sequence of characters surrounded by ".

If the " mark is desired in a string it must be followed by a 'IO

EXAMPLES

WRITE ("N = "> N)

This statement will cause the following line to be printed if

N is integer and has the value 3.

N = 3

WRITE ("SHAWPEARE WR;$TE ""HAMUZT""" )

This statement will cause the following line to be printed.

SHAKESPEARE WR$TE "HAMLET"

In the statement

WRITE (El,E2>-,Enj

13



L-
i

i
4c
t

the type of each Ei determines the field in which its value will be

placed. The field for Ei+l follows the field for Ei on the current

print line. Jf there is not enough space remaining on the current

print line, the line is printed and the field for Ei+l begins at the

beginning of a new print line. The first field of each write statement
.

begins on a new print line.

3. Construction of the program

3.1 Simple Statements

Note that the simple assignment statement takes the form V := E

and that the input-output statements are

READ (V), READON( and WRITE(E)

where V is a variable or a variable list and E is an expression or

expression list.
L

3.2 Compound Statements

In later descriptions in these notes " compound statements" will be

synonomous with "blocks without declarations".

3.4 Comments

The construction

comment text;

may appear anywhere in an ALGOL W program. However, in ALGOL W the

comment following an end is limited to one identifier which is not a

reserved word.

14



3 ."s. Example.

To dlarify the change necessary to form an ALGOL W'program from

the program etilosed  in the box, the example is shown as it would be

punched. Note that an AIGOPli W program must end with a o (period).

BEGIN COMMENT EVALUATION OF A POLYNOMIAL;

REAL AO, Al, A2, A3, Xl, P;

READ (AO, Al, A2, A3, Xl);

P :i ( (A3 * Xl -b A2) * x1 + Al) * Xl + AO;

WRITE (P)

END.

Note that the indentation, although not required, allows the begin

and end to be matched easily. In complicated programs indentation will

improve readability and therefore reduce the number of careless error&, 8

4. LOOPS

4.1. Repetition

The variable V of the for statements described is always of the

type integer and cannot be declared in ALGOL W; its declaration is

implicit (cf. Section

assignment within the

for clause must be of

The statement of

719 and its value cannot be changed by explicit

controlled statement. Each expression E of the

type integer.

the form

for V r= Hl,H2" o c,$in & 5,

is correct for n > 1 in ALGOL W only if Hl~H2j0~69Hn  are all integer

' expressions,



The form

for V := E; step 1 until E&do S;-- Al-

may be abbreviated as

for V := Eluntil %& S;

4.2. Subscripted Variables

In AEOL W the subscript expression must be of type integer, Any

a

L
I
L

?

other type will result in an error detected during compi1ation.

4.2.1. Array declarations

. In the text, the : 'in array declarations must be replaced by ::

for ALX;OL W. The word array must always be preceded by its type.

ARRAY A[l:lC,l:20]; is incorrect and should be written

l!U3AL ARRAY A (l::lo, 1::20)3

Only one set 0-f subscript  bounds may be given in an array declaration.

Hence, the examples should be corrected for ALGOL W to read

EXAMPLES

real array A, B, C(l::lO)*>

real array D, EG(l::lO, 1::20);

integer array N, M(l::k);

4.4.2. Example

In ALGOL W the example in the box would be written as listed below.

16



BEGIN COMMENT DERIVATIVE OF A POLYN0MIAL;

INTEGER N; REALP,Cj

REAL ARRAY A(1;:20);

\

j READ 0, a;

FOR I l -.- 1 UNTIL N DO mD0.N (A(I));

P 0;: =

FOR I := N STEP

,c-

P := p*c +

WRITE (P)

-1 WII, 1 DO

I*A(I);

59 The Conditional Statement

Conditional statements are very useful apd are used in AI&X& W as

discussed in this chapter for ALGOL  60. Note that the symbols <

and f must be replaced by < =, 3 =t and
- 1 LJ

I =$ respectively.

6. Jumps

6.1. Labels

All labels in AIGOL W must be identifiers which are not reserved

words. The final expression in a function prodedure may be labeled,

6.2. The Jump Statement

&to my be written as GO TO or GOT0 in AUOL W.

6.2.1. Jumps out of loops or conditional statements

The value of the loop variable is not accessible outside of the

loop in ALGOL W.

17



6.2.2. Inadmissible Jumps

It is not possible to jump from outside into a loop in ALGOL W.

Likewise, it is not possible to jump'into a conditionalstatement.

In general, it is not possible to jump into the middle of any

statement, viz. for statement, conditional statement, while statement,

compound statement, block,

6.4. Another Form of LOOP Statement

The statement described in the text does not exist in AIGOL  W,

However, AIGOL W has another form of loop statement which is

useful -- it is called the while statement.

FORM

B is a condition like that described in Chapter 5. As long as B is

true, the statement S will be repeated. It is possible that S is '

never executed. More precisely, this loop may be interpreted

L: if B then

begin S; goto L,

end

The example in Section 6.3 can be rewritten as follows:

BEGIN COMMENT DETERMINATlGN CP THE CUBE ROOT;

REAL A, APPROXIMATLONVALUE,  X, Y, D;

READ (A, APPROX?UTIONVALUE);

X := APPROXIMATIONVALUE; D := ABS x;

18



7 . .

must

WHILE D > .5’-9 * ABS X D,b

BEGIN

Y x; x :=:= P*y + A/(y*y))/3;

D := ABS (X-Y);

END;

END.

Block Structure

For the purposes of block structure in ALGOL W compound statements

be considered as blocks, namely blocks without declarations. A

compound statement with a label defined in it is a block. (Reread the

notes in this paper concerning Chapter 6.) In for statements the scope

of the variable V in the for clause is the statement S following the do.

7.4. Dynamic Array Declarations

The expressions specifying the subscript bounds in dynamic array

declarations must be of type integer.

8. Propositions and Conditions

The word "Boolean" in the text should be replaced throughout by

"logical".

8.1. O p e r a t i o n sLogical

Some of the symbols for logical operations are different in

ALGOL W.

19



Operation

negation

conjunction

disjunction

equivalence

ALGOL ALGOLW

1 1

A

v CR

z .-

READ AS

not

and

is equivalent to

ALGOL W does not have an equivalent form of the ALGOL implication

symbol, 3. The effect of DB is gotten by (-4) OR B, The ALGOL W

expression &I = B is equivalent to the ALGOL 60 expression-,(&B).

The following hierarchical arrangement defines the rank cf the

operator with respect to other cperators.

Level I Operations Symbol

1..I. LONG, SHORT, ABS

2 SHL, SHR, *

3 1

4 .AI\$D> *, /> j,V, REM

5 OR, +, -

6 <t < z3 >:,  > “> =$ 1 =9 1s

In a particular construct, the operations are executed in a sequence

It'r .T the highest level (smallest number) to the lowest level (largest

number). Operations of the same level are executed in order from left

to right when logical operations are involved and in undefined order

in arithmetic expressions0

The discussion in this section is correct except concerning the

hierarchy of operators. In general, the extra parentheses are required

in ALGOL W when using arithmetk expressions with logical operators.

The examples below are correct ALGOL W and correspond to examples in

20



L

the text. All parentheses are necessary.

EXAMPLES

(A > 5) OR (B > = 1)

- (A*B>=C+D

(0 < = xj AND (X
L.

j = (ABS (21 -t- 22) > M)

<= 1)

(X = 3) aR (1-c = X) AND (X < = 2)

means (X = 3) OR ((1 < = X) AND (X < = 2))

9. Designational Expressions

The designational expressions described in the text do not exist

in AIGOL W. The chapter may be skipped,

However, ALGOL W provides a designational statement and expression

which is equivalent to that described by the text.

9-l. The Case Statement

The form

CASE E \3F

BEGIN

sp+*,  n _
l S

END

is called a case statement. The expression E must be of type integer.

T& value of the expression, E, selects the SE statement between the

i BEGIN END pair. Execution is terminated if the value of E is less

than 1 or greater than n. After the designated expression is executed,

execution continues with the statement following the END,

21



.

--II_-_ -_. _ _ _ -.-&,&

CASE I OF

BEGIN

BEKIN J := I; GOT0 Ll;

END;

I := r + 1;

IF J < I THEN GOT0 Ll

END

If the value of the expression, I, is 3$ for example, the statement,

IF 5 < T THEN GOT0 Ll is executed, IfJ>= I then execution continues

following the END,

9020 The Case Expression

Analogous to the case statement, the case expression has the form

CASE E OF (El,E2,.,..,E  !j7-

The value of the case expression is the value of the expression selected

by the value of the expression E, Ifthe value of E is e, then the

(

i

I-
I

value of Ee is the value of the case expression.
The type of the case

expre,-ion  is

if all Ei's are integer

if any Ei is real and no Ei $8 complex or long

complex

‘Yea1

long- real
.

if any Ei is long real and all Eirs are long real

or integer

if any E, is complex
long complex if any Ei is long complex and all EiVs are long

complex, long real, or integer

22



E X A M P L E '

CASE 3 OF (4.8; 12, 17, 4.9) has the value 17 in floating

point representation since the type of the case expression is real.

10. Procedures

lOUl,lG Global and formal parameters

Labels may not be used as formal parameters. Switches do not exist

ii? AUOL W,

i 10,1.2J. Arguments

Arguments serve to introduce computational rules or values into

the procedure. A rule of computation can be brought into the procedure

if the computation is defined by means of another Grocedure declaration,

or a statement.

L
Formal simple variables, formal arrays, and formal procedures can

be arguments.

Example 3 is correct in the text.

A formal array can be used as an argument in only one way, %a11

by name". The discussion concerning "call by value" should be ignored.

10.1.2.3~ Exits

Because labels may not be used as actual parameters to a procedure,

the text's discussion of exits is not correct for A!XOL W, However,

a sta,tement (in particular a GOT0 statement) may be used as an actual

parameter corresponding to a formal procedure identifier. In this way

side exits leading out of the procedure are provided,

23



10.1.3. Function procedures and proper procedures

From given pieces of programs, procedures can be derived either

in the form of function procedures or in the form of proper procedures.

The body of a function procedure is either an expression or a

block with an expression before the final END in the procedure body.

The value of the expression is the value of the function procedure.

The way in which a procedure is set up and used is a fixed

characteristic of the procedure and is established directly in the

declaration by means of the introducing symbols. The declaration of

functions is introduced by the symbols

INTEGER PROCEDURE

REAL PROCEDURE

LOGICAL PROCEDURE

.

according to the type of the res.Llting value, The type of the expression

giving the value of the procedlze must be assignment compatible with

the declared type of the function procedure.

The declaration of the proper procedure begins with the symbol

PROCEDURE

No resulting expression can be placed at the end of the procedure

body.

lO.le40 The procedure head

All necessary assertions about the formal parameters and the use

of the procedure are contained in the head of the procedure declaration.

In AIGOL W the head consists of three parts:



(1) Introductory symbol

(2) Procedure name

(3) List of formal parameters, and';th&ir spetiifications

(1) The introductory symbol determines the 1Lker use of the procedure

(cf. Section 10.1.3.)

(2) The procedure name can be chosen almost arbitrarily. The only

restriction is the general limitation concerning some reserved

. names (ct. Section 1.3).

(3) The W-w, value specification, and identifier name of formal

parameters appear in the list of formal parameter specifications,

and not separately as in AIGOL 60. The comma serves as the

general separation symbol between formal parameter identifiers

of the same type and value specification. The semicolon serves

as the general separation symbol between specifications of formal

parameters of different typzs or value specifications,

The type of the formal parameter is specified by the symbols

REAL

LONG REAL

INTEGER

COMPLEX

LONG COMPLEX

LOGICAL

RRALARRAY

LONG REAL ARRAY

COMPLEXARRAY

LONG COKPLEX ARRAY

ii&EGER ARRAY

LOGICAL ARRAY



I
i

L

I

c

REAL PROCEDURE

LONG REAL PROCEDURE

COMPLEX PROCEDURE

LONG COMPLEX PROCEDURE

INTEGER PROCEDURE

LOGICAL PROCEDURE

PROCEDURE

The value specification is used only for parameters called by

value b It is specified by the symbol value, It may only follow the

types INTEGER, REAL, LONG REAL, LCGICAL, COMPLEX, LONG COMPLEX,

EXAMPLES

PROCEDURE P (REAL X, Y; INTEGER VALUE I; PROCEDURE Q, R);

REAL PROCEDURE Z (LOGICAL L, M, N; REAL PROCEDURE P);

Note that in the case of formal parameters used as array identifiers,

information about the number of dimensions must be given. The last , ,

identifier following each array specification must be followed by "('I

followed by one asterisk for each dimension separated by commas, followed

EXAMPLE

-PROCEDURE P (REAL ARRAY X, Y (*,*); REAL ARRAY Z (*)) e

LO,20 The Procedure Call

The procedure call in ALGOL K ',Au unchanged from.AIGOL  60. This

section should be read carefully,

Since labels are not allowed as parameters, it was earlier suggested

that jump statements be used and that the corresponding formal parameter

be a'iproger procedure (cf. 10.1.4. Example 8),* In general, any
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stateme'nt may be used as an actual parameter corresponding to a formal

proper procedure which is used without parameters,

EXAMPLE

BRCIN

PROCEDURE VECTOROPERATIONS  (INTEGER J; INTEI~ER VALW N;

PROCEDURE P);

BEGIN J := 1;

WHILEJ<= ND0

BEGIN P; J :L J+l

END

END;

REAL PROD; INTEGER I;

REAL ARRAY A, B, C(l::lo);

(initialize A and B)

Ll: VECTOROPERATIONS (I, 10, C(1) := A(1) + B(1));

PROD := 0.0;

L2: VECTOROPERATIONS (I, 10, PROD := PROD + A(1) * B(1));

END

The statement Ll is a procedure call which causes a vector addition

of A and B to be placed in C. The statement L2 causes the element-by-

element vector product of A and B to be calculated and placed in PROD.
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10.3. Ekanple

REAL PROCEDURE ROMBERGINT  (REAL F'ROCEDWW FCT;

REALVALUEA, B; INTEG~ VALUE ORD);

BEGIN REAL Tl, L;

ORD := mvrcm ((ONI + 1) / 2);

BEGIN INTEGER F, N; REAL M, S;

REZL ARRAY U, T (1 :z ORD);

L B-A;:=

T(l) := (FCT(A) + FCT(B)) / 2;

U(l) := FCT ((A + B) / 2);

F N := 1;:E

FOR H := 2 UNTIL OR&l DO

BEGINN := 2 * N; S := 0;

M := L / (2 * Nj;

FOR J := 1 STEP 2 UNTIL 2 * N -

S := S + FCT (A + J * M);

U(H) := S /.N;

T(H) := (T(H - 1) d- U(H " 1)) /

_F:=l;

1 DO

2;

FOR J := H - 1 STEP -1 UNTIL 1 DO

BEGIN F :=4 *F;

T(J) :=T(J+~)*(T(J~~)-T~~))/(E"-~);  .

u(J) := U(J + 1) + (U(J + 1) - U(J)) / (P = 1);

END;

END;

IF QRD > 1 THEN
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BEGIN

T(2) := (U(1) + T(1)) / 2;

T(1) := T(2) + (T(2) - T(1)) /(4 * F - 1)

END;

Tl := T(1)

EN%

Tl * L

EN%

The names of standard functions and standard procedures cannot appear

as actual parameters in ALGOL W. Therefore the calls to R$!kZRGINT

in Section 10.3 are incorrect. However, this situation may be overcome

by declaring a procedure which returns the value of the standard function

or performs the computation of the standard procedure.

EXAMPLE

REAL PR$CEDURE SINE (REAL VALUE X); SlN(X);

Then a call to R$mERGINT might be

A := RCMBERGINT (SINE, X(l), x(2), lo);

-EXAMPLE 6

REAL PROCEDURE TRACE (REAL ARRAY A(*,*); INTEGER VALUE N);

BEGIN REAL S;

s 0;:=

FOR I := 1 UNTIL N DO

S := S + A(I,I);

S

END
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EXAMPLE7

PROCEDURE COUNTUP (INTEGER Xj;

EXAMPLE8

PROCEDURE ROOTEX (REAL VAL-UE X; REAL Y; PROCEDURE P);

IF X > = OTHEN

Y : = SQRT(X)

ELSE

BEGIN Y := SQRT(ABS X);

P

END

The wtual parameter corresponding to the formal parameter P

should be a jump statement.
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PART II: Some Extensions of ALGOL 60 in ALGOL W

1. Procedures

J.6.1, Call by Result

Besides "call by value" and "call by nwne”, MGo;lir~  W nXkws parameters

to be celled by result, The formal simple variable ia hlrndled  as a local

quantity although no declaration concerning this quantity is present,

The value of the simple variable is not initialized 9% the procedure

call, If the procedure exits normally; the value corresponding to tk:.,

formal simple variable is assigned to the corresponding actual parameter.

The formal parameter must be assignment compatib&e  with the actual

parameter. To specif&:a  result parameter, insert the word RESULT after

the type and before 4&e identifier (as with VALUE),

EXAMPLE

PROCEDURE P(REAL RESULT X,Y; mTEGER VALUE I; LONG COMF'LEX  RESULT 2);

1,2. Call by Value Result

Formal simple variables may be calhi  both by value and result,

This combines the calls of value and reaUL& so that the formal idensifier

is initialized to-the value of the corresponding actual parameter at

procedure call and the value of the formal identifier is assigned to

the corresponding actual parameter at a normal procedure exit, To

specify-a value result parameter, insert the words VALUE M35NJLT  afier

the type and before the identifiers.

EXAMPLE

PROCE39URZ  Q(INTEGER  VALUE RESULT I&K);



i

1
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2. Procedure Calls

201. Sub-arrays as Actual Parameters

In ALGOL W, it is possible to pass any rectangular sub-array (array

of few dimensions, i.e., a generalized row) of an actual or formal array

to a procedure. Those dimensions which are to be passed to the procedure

are specified by *'s, and those which are to remain fixed are specified

by integer expressions. The number of dimensions passed must equal the

number of dimensions specified for the corresponding formal array.

EXAMPLE

The actual parameter may be a sub-array of a three dimensional

real array A. Examples of possible actual parameter specifications and

corresponding formal parameter specifications are listed below.

Actual Parameter Corresponding Formal Parameter Specification

A or A(*,*,*)

m,*,*>

A(*&*)

A(*,*&

A(12 JA

-a,*, J>

real array B(*,*,*)

real array B(*,*)

real array B(*>*)

real array B(*,*)

real array B(*)

real array B(*>

Read in the size of one dimension of a cubic array X, then

read in the elements of X.

Calculate and write out the sum of the traces of all possible

two dimensional arrays in A using the previously defined real procedure

TRACE.
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BEGIN

REAL SUM;

REAL PROCEDURE TRACE (REAL ARRAY A(*,*); INTEGER VALUE N);

BE3ZIN  COMMENT THE BODY OF THIS PROCEDURE IS GIVEN IN A

PREVIOUS EXAMPLE;

END;

INTEGER N;

READ(N);

BE;GIN

REAL ARRAY X(l::N, l::N,  1::N);

FOR I := 1 UNTIL N DO

FOR J := 1 UNTIL N DO

FOR K := 1 UNTIL N DO READON(X(I,J,K));

SUM := 0;

FOR I := 1 UNTIL 'hT  DO

SUM := SU& f TRACE(X(I,*;  ;/j + TRACE (X(* I *) N)
99 9

+ RACE (X(*&I),M);

WRITE (SUM)

END

’ 38 String Variables

Frequently, it is desirable to manipulate sequences of characters,

This facility is available in RLiGOL  W in the form of string variables,,

.
Each variable has a fixed length specified in the string declaration,,

The form of the declaration is
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string-  (<integer number>) <variable list>

The integer number must be greater than 0 and less than or equal to

256. The specification "(<integer number>)" may be omitted; a default

length of 16 is assigned to the variables, Arrays of strings also may '

be declared,

STRING A, B, C

STRING (24) X, Y, 2

STRING (10) ARRAY R, S(O::lO,  5::153

In order to be able to inspect elements of the string or to

manipulate portions of the string, a substring designator is provided,

of the form:

<striing identifier> (E 1 <integer number>)

The- expression E must be of type integer, This string expression

selects a substring of the le-p+th specified by the integer number from

the string variable beginning at the character specified by the integer

expression, The first character of the stringhasposition 0"

EXAMPLE

BEGIN STRING (5) A;

A := "w,";

A (312) := A (012);

WRITE (A)

END

In this example the constant string JfQRSTU"o is assigned to the

variable A which is declared to be of length, 5e Then the character

positions G and 1 of A are assigned to positions 3 and 4 of A.
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Consequently, when the string A is written its value is QRSQB'.  It

should be noted that the assignments are made character by character

from left to right. If the second assignment statement in the example

above had been

A (213) := A(0\3)

the resulting value of A would have been QRQRQa

The variable on the left of an assignment statement must be of

length greater than or equal to the length of the expression on the

right. Ifashorter string is assigned to a longer string, the shorter

string is extended to the right with blanks until the lengths are equal.

BEGIN STRING(5)  S;

S : =  "ABCDE“;  S := "Xy";  WIT-E(S)

END;

The string XY is printed.

Strings within a CASE exprssion or an IF expression must be all

of the same length.

All the relational operators may be used with string argumentso

The EBCDIC representations of the strings are compared character by

character. If one string is shorter than the other, the shorter string

is filled with characters less than any possible EBCDIC character..

Strings of unequal length are never equal.
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EXAMPLE

Relation

"A" < "B"

'I 1'A = "A"

"A" > "2"

4. Records and References

Value

TRUE

TRUE

FALSE

FALSE

Records and structured quantities composed of quantities of any

of the simple types such as REAL, INTEGER, STRING, etc. Records

themselves do not have values; only the quantities which compose the

records may have values.

4.1. Record Class Declarations

Record declarations indicate the composition of a record. Unlike

simple type declarations or array declarations no storage is reserved

for a record when the record declaration is encountered. Essentially,

the record declaration only describes the form of records to be created.

The record declarations appear with all' other declarations. The form is:

RECORD V ( <declarations of variables of simple type> );

The name V is the name of the record class. The variables

declared between the parentheses are called the fields of the record.

EXAMPLES

RECORD A(INTEGER  1,J; REAL 2; STRING (5) S);

RECORD B(REAL X; LONG REAL LX; REAL Y);



The punctuation of the examples should be noted carefully., The

names ir. the list of identifiers following the indication of the simple

type are separated by ",". The list is ended with a ";" unless the

'I;" would immediately precede the closing ")"@

4.2, Reference Declarations

REFERENCE is a simple type in ALGOL  W. The value of a variable

of type reference is an address of a record. This address is some-

times cued a pointer to a record.

Reference declarations appear in a program where all other declarations

L

t

r

appear,

FORM

REFERENCE (V) Vl;

V is a name of a record class. Vl is a name of a reference

variable or a '*rlst of names of reference variables separated by ",".

ExAmm

REFERENCE (A) Rl, R2; R3;

The name V af a record class may also be a list of names

separated by I'?". This list indicates the record classes to which

records referenced by the reference variables must belong.

REFERENCE (A,B) R4, R5;

R4 and 85 may point only to records of record class A or B.
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The reserved word NULL stands for a reference constant

fails to designate a record,

Arrays of references are declared and used analogously

of other simple types. The form of the declaration is:

REFERENCE (V) ARRAY Vl (<subscript bound+);

EXAMPLE

REFEtiENCE (A,B) ARRAY AR19 AR2- (1::10), 3::7)j

1
Ii

L

which

-Lo arrays

The implementation requires that all reference arrays declared in

a block be declared in the same reference array declaration or

immediately following a reference array declaration.

REFERENCE (A) ARRAY ARl, AR2 (l::lO,  3::7);

REF'EREIKE (B) ARRAY A& (2::17);

TT-1 zhe example above, any L 8;her declaration except a reference

3.I . . . -j2 .cziaration  is not allowed between the two reference array

~:zcIa:atj.ons,

I RzZerence  Expressions

Juantities of simple type reference may be used in assignment

stat?inents  and comparisons,

EXAMPLES

Rl := R2

Rl := NULL

RI. =I R2

R2 7 = R3
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only the relations = andl=are allowed between references. In

order to inquire to which record class a reference expression is bomdj

the IS operator is provided. The form is:

E rs v

E is a reference expression and V is a name of a record class. The

value of the IS operator is logical, either TRUE or FALSE.

ExIAMPLE

R4 IS B

4.4. Record Designators

A particular type of reference expression is the record designator.

A record designator is the name of a record class.

Rl:=A

R4 := B

When the record class name is encountered, the value is a pointer

to a new record of that class. The values of the fields of the new

record are undefined.

AIGOL W provides a short notation for creating a record and

initializing its fields. This modified record creator has the form

V is the name of the record class. The expression list EL between the

parentheses is the list of the values of the fields specified in the

order they aprear  in the record class declaration.
.
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EXAMPLE 2

BEGIN RECORD H

REFERENCE

(INTEGER C,D; STRING (2) S);

0-Q RI;

Rl : =  H('j, 8, "M")

END*

Examples 2 is a short program which declares a record class H and

one reference variable Rl whose values may point to records of class H.

One record of class H is created and each field of the record pointed

to by Rl is initialized.

4.5 Field Designators

In order to manipulate the values of the fields of a record, the

expression

exists in ALGOL W. E is a reference expression. Vl is a field of the

record class of the record pointed to by E. The type of the field '

designator is the type of the variable Vl.

EXAMPLES

Z(R1)

mw
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mm 2 can be rewritten as:

BEGIN RECORD H (INTEGER C,D; STRING (2) S);

REFERENCE (H) Rl;

Rl := H;

C(R1) := 5;

D(R1) := 8;

Sh) : = “&”

END.
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The following notes are intended to give the

student of Computer Science 136 some orientation

into how numbers are represented in the IBM System/%0

computers. Because we are using Algol W, some refer-

ences are made to that language. However, very little

of what is said here depends on the peculiarities of

Algol W, and this exposition is mostly applicable to

Fortran  or Algol 60 with slight changes in wording,

It will also do for the floating-point numbers and

full-word integers of PL/l. Users of shorter or

longer integers or decimal arithmetic in PL/l will

need more orientation.
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On IBM”s  system $60, the following units of information storage

are used:

a) the bit, a single 0 or 1

b) the Ge, a group of eight consecutive bits

c) the (short) word, a group of four consecutive byte+-

ioevt 32 consecutive bits

d) the long word, a group of two consecutive short words--
Le,, eight bytes or & bits

For number representation in Algol W the words and long words are

the main units of interest a

INTEGERS

L

L
f
c

Integers are st.ored  in (short) words Of the 32 bits of’ 8 short
word, one is reserved for the sign (0 fbr -I- and 1 for -), leaving

31 bits to represent the magnitude, A positive or zero integer is

stored in a binary (base 2) representation

means base 10) is stored as
Thus 2110 (the subscript

! 0000 0000 0000 0000 0000 0000 0001 0101
t

o

sign bit

. To confirm this, note that

21 = 2 x 23O + 000 + 0 x 2 5 + 1 x z4 -i- 0 x *3 + 1 22 Q’Xy +\ gl $- 1 x

The largest integer that can be stored in a word is

2o
0-

230 + ,29 +
-l-2

1
+2

0
0.. z $1 - 1 = (2147483647)lo o

Any attempt to create or store an integer larger than 2>‘, 1 will

produce erroneous results,

be warned of the error,
and (unfortunately) the user will not always

(Gee below, )
To save space in wri-king words on paper, each group of four bits

in a word is frequently converted to a single base-16 (hexadecimal)

digit, according to the following code:



2base

0000
0001
0010
0011
0100
0101
0110
0111

base 2 base 16

1000 a
1001 9
101p A
1011 B
1100 c
1101 D
1110 E
ZlU F

Thus A, B, C, D? E, F are used as base-16 representation6 of the dectial

numbers 10, 11, 12; 13, J-4, 15 respectively, Nevertheless, integers a're
stored as base-2 numbers

Using hexadecimal notation, the decimal number 21 is represented

i oooo0015,1;  J

Note that % is the base-16 representation of 2LL0  0
Negative integers are 6tored in what is called the ?woV6 complement

form", T;‘or  example, -1 is stored as

= FFFFFFFFLG  o
Also, -3.1 is stored as

fill 1 1 1 1  1PlJ ML El91 1111. *LO 1011
= FFFFFFEBa6 ’

Tile representation for -21 is obtained from That for +21 by chmging
every 0 to 1 and every 1 to 0, and then adding + 1, in ba6e-2 arithmetic
to t h e  r e s u l t , Similarly for any negative integers,

intq.r has 1 as its sign bit,
Every negative

The smallest integer storable in
System/g6O  is -2'l = -@+183c;48 a and is represented by 8000000016  a

Another way to t,hink  of the representation of negative numbers is

to consider a 320pPace  binary accumulating register (the base-2 equivalent

of the decimal accumulating register in a desk cticu.latAng  machine),

If one s-tarts with all zeros in this register ,9 one get6 the representation
for -1 by subtracting 1, The process require6 a "borrow" to propagate
to the left a1.l t,he way across  the regi6ters leaving a3.9 one6?  just 86
on a decimal accumulator this would leave all r&es, Continue& sub-
traction will give the representations for -2:, +a 606 e



From the point of view of an accmulaLor  we can aPs0 see what

happens when we create a positive number larger than 23 -p c For
example, if we add 1 to s' 31-1, the resulting carry will go al3_ the
way into the sign bit, leaving a sign bit of .1 with all ot'her digits

zero O But this is the representation of -23'. Thus  the attempt to
produce positive numbers in the range from 2 31 to approximately 2 32

will yield a negative sign bit, Consequently, positive integers that
tloverflow" into this range are sensed as negative by System,'360.  Any

anomalous  appearance of negative integers in a computation should

lead the programmer to suspect integer overflow,T h e  m e c h a n i s m s  o f
Algol W for detecting integer overflow (not described in this document)

can be used to detect addition6 or subtractions that produce integers

outside the range from -2 31 to 231-L The presence of an integer
product outside that range is not at present detectable in Algol W,

although the compiler could (and perhaps should) be modified to make

a test. Att,empts  to divide an integer by 0 will yield an error message

and an ir--:levant quotient and remainder.

The behavior of System/'360  on integer overflow is quite different

f+srn the Burroughs B5500,,A In th- --atter machine, any integer that

overflows is replaced by a rour :d floating-l+. c+, number, There are
ad---antages to either approach t integer overflow, depending on the

a -;.?cation.

If the user suspects that Integers in hi6 program are getting

anywhere near 109 , he should convert them to double-precision floating-
pain+  numbers by use of the ALgol W operator LONG, Conversion to single-
prJ,c- _ 'r. floating-point numbers m&y lose some precision,

The most important thing fw a scientific  user to remember is that
in4;e-,l zvcc in +#hz  range  -2 3r to 2 314 are stored without any approximation.
MO’“i-OVGZ* - operations on integers (adding, subtracting, multiplying) are

done without any error, so long a6 ali intermediate and final results

are integers between -2 31 and 2314.. It is perhaps easier to remember
as safe the interval from -2 x 109 to 2 x 10 9 3 obtained from the
useful approximation 2 10 ; 103 0



The operations of division without remainder (called DIVin Algol

W) and taking the remainder on division (called REM in Algol W) always

give integer answers, If the divisor is 0, an error message is given,,
In Algol W two operations on integers give results that are not

stored as integers--namely / and ** Li

FLOATING-POINT NUMBERS

Numbers in many scientific computations will grow in magnitude

well beyond the range of integers described above, To provide for
this, System/360 and most scientific  computers have a second way to

represent numbers-- the so-called floating-point representation,
The significance of the name "floating-point" is that the radix point

--for example, the decimal point in base-10 numbers-s-is pezed to

float to the right or left, thus permitting scaling of numbers by

various powers of the radix, Although a decimal point tha% has floated
off to the left will produce a number written like 0,00134gP  the
numbers are actually represented in a form closer to what is often

called scientific notation, here 10345X10Y3  0

In System/360,  floating- Ant numbers 7~ always represented in
base-16 no%ation;  iOeO, the rC ix or number base s 16,,' - This permits '
us tc write numbers in abbrevi ?!ed form (as we did with integers earlier),

&ore  impor%ant, the use of base-16 conforms with the hardware arithmetic

processes in which shifting is done four bi%s at a time to speed up the

operations. The speed-up is achieved at a slight cost in precision,

as 3.:1 learned from detailed error analyses which we cannot go into here.

We first consider the floating-point represen%ation  of numbers by

a single word of 32 bits, This is the so-called single-precision
or short real number, the number of type REAL in Algol W, The 32 bits
of a word are numbered from 0 to 31s from left to right, just to identify

them, In floating-point representation the left-hand eight bits (bits 0

to 7, equivalent to two hexadecimal digits) are devo%ed to %he sign of

the number and the exponent of 16 associated with the number, The right-

hand 24 bits (bits 8 to 31:, equivalent to six hexadecimal digits)
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1

yepresent six significant hexadecimal digits (the

As with integers, the sign of the number is denoted by bit 0,

significand) of the

w?h 0 representing -+- and 1 representing - D

Bits 1 to 7 give the binary (base-2) representation of a non-

negative in%eger in the range 01o to 127,,  y inc lus ive .  This  in -
teger is called the biased exponent, for reasons now to be eqlained.

If this integer were taken  directly as the exponent, we would have no

negative exponents, and our range of floating-Ipoint  numbers could not

inciude such numbers as 16
-25

, 1% is desirable to have an exponent
range that is approxima%ely  symmetric about zero, in System/360 one
obtains the true exponent of the floating-point mnber by subtractfng
64 from the biased exponent represented by bits 1 to 7. As a result,
the actual exponen?:  _ z&l;: from -64 to 630

'11!><3 ?'- I-. bits 8 to 31 of a number are regarded as six hexadecimal

&$t- s ?rlth a hexadecimal point at the left-hand end, If the fLoa%ing-
point number zero it*r> being represented, a91 %he hexadecimal. digits are

zero, as are all the other bits, Otherwise, at least one of the hetca- ,
decimal digits must be nonzero, A floating-point number is said to be
normalized if the left-hand hex tdecimai  digit +A most; significant--
di&.t)  of the significand is nonzero, In System/360 the floating-point
n.-lbers are ordinarily normalized, and we will not consider any other

forms 0

We no:~ gke the floating-point representa%ions  of S~IW sample
nUI*\i’r;r’r..  ‘3  c - As we said before, the number zero is represented by 32 zero

bits, i,3,, b:: eight 0 hexadecimal digits, Thus zero 5s represented
by %\e same Trords  in floating-point or integer form. No other number
has this property,

The number LO is represented by the word 3

sign bit
L 0,100 oool;

biased
exponent

,OOOl 0000  0000  0000  0000  0000,  e

signiflcand
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To check this, note that the sign is 0 (representing -+-). The biased

e x p o n e n t  i s  10000012  or 651, 0 Subtracting 641, yields 1 as the

true exponent. The hexadecimal significand is 10000016 D Putting a

hexadecimal point at the left end gives the hexadecimal fraction

l loo00016 '
which equals l/16, Thus the above word represents

1+ 1416  times 16 , or LO .

To save writing, the above word is ordinarily written in %he

hexadecimal form 41100000 . While one gradually learns to recognize

some floating-point numbers in this form, the author knows no easy way

to. convert such a hexadecimal word into a real number. One just has

to take the right-hand six hexadecimal-digi%s, and prefix a hexadecimal

point, Then one examines the left-hand two-hexadecimal-digit number

(here 41), If this is less than 8016 t the floating-point number is

positive and one gets the true exponent by subtracting 4016 = 641, .

If the left-hand two-hexadecimal-digit number is 8016 or larger, the

floating-point number is negative, and one gets the true exponent by

subtracting "16 = 80,6 -,- 40,6 = ip,, and affixing a minus sign.

Some facility with hexadecimal arithmetic is required, if one has to

deal with such numbers.

In this presentation, we kave considered the radical point to be ,

at the lef% of the six significant hexadecimal digits, and regarded

the exponent as biased high by @t,, . As an alternative, the reader

may prefer to place the radix point Just to the right of the most

significant digit of the significand, and regard the exponent as biased

high-by 65,, ., This brings the significand closer to usual scientific

notation but, of course9 requires a trickier conversion to get the

true exponent, The fact that either interpretation (and many others) '

are possible shows that really the radical point is just in the eye of

the beholder, and not in the computer!

Several examples of floating-point numbers are now given in hexa-

decimal notation, with t?_re  confirmation lef% to the reader.
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deciml

O,O
LO
0.0625

16.0
256.0
-1.0

-16.0
3e5

floatix#&-point

00000000
4l.loooOo
40100000
42100000
43100000
C1100000
C2100000
4138omo

The largest floating-point number is TFFFFFFF,  representing

.FFFFFF X 163F o r  ( 1  - 16~~) x 1.6~~  f 7-23 X lo?', (Here 10 and 16
denote decimal numbers,)

The smallest positive normalized floating-point number is 00100000,

representing

’ x16-64
16

+ 5040 x lomY

Negatives of these  two numbers can also be represented, and are

the eMmmes in magnitude of representable negative numbers,

Very few numbers can be exactly represented with six significant

decimal digits. (Exercise: Which ones can?) For example, l/3 = .333333,,
only approximately. In the same way, very few numbers can be exactly
represented with six significan -cxadeeimal digits, (Exercise:
Which ones can?) For example, '3 = .555555

16 7 approximately.
Moreover, some numbers that are exactly representable in decimal are
on"!y approximately representable in hexadecimal; for example,

l/l0 = ,lOOOOOlo exactly; but

l/lo - wlp9ypii16 only approximately.
_ Thus round-off error -enters into the representation of most-e-

floating-point numbers on System/g60,  and the round off differs fram

that with decimal numbers. This can easily give rise to unexpected

L-

results. For example, if the above number o l-999PA,6 (+ OOllo) is
multiplied bythe integer lOOlo = 6416 1 one  gets  not A.ooooo16 =

10.010 9 but instead A"0000316 $ as akrmlative effect of the slightly,
high approximation to Ollo 0 &d A.0000316 rounds to 10,00002

10
on conversion to decimal,

.

1 0 " .

The precision of a single-precision hexadecimal number is roughly

One can think of this as being crudely equivalent to seven sig-
-
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nificant  decimal digits-.

Not only do errors appear in the representation of numbers inside

System/g60 ( or any computer), bu% they arise from arithmetic operations

performed on numbers, For example, the product of two floating-p.ofnt
numbers may have up to 12 significant hexadecimal digits. When the
product is stored as a single-precision floating-point number, it muse

be rounded to six hexadecimal digits, This in%roduces  an error, even

though the factors might have been exact,

The story of round off and its effect on arithmetic is a complex

and interesting one. Only within the current decade have %here  begun

to appear even partly satisfactory methods to analyze round off, and

we cannot go into the matter now, Some idea of %bis  is ob%ained  in
Computer Science 137.

When an Algol W program assigns decimal numbers or integer values

to variables of type REAL, these are immedia%ely  converted to hexadecimal

floating-point numbers, with (usually) a round-off error, When one
outputs numbers from the computer in Algol W9 they are converted to

decimal, Both conversions are done as well as possible, bu% fntxoduce

changes in the numbers %hat the r?ogrammer must be aware of, And, of
course, all intermediate opera++,ons in%rodu<e  flrrther round offs md
possible errors, It is unthinkable to do the analysis necessary to

counteract these errors and get the true answer to the problem, If the

user wishes answers uncon%aminated  by round off, he should use integers

and integer arithmetic, and be prepared %o guard against overflow,
Fortunately most users can accep% an indetermina%e  amount of

round off in their numbers, provided %hey  have some assurance  %ha%

round off is not growing ou% of control It is %he business of numerical
analysts to provide algori%hms  whose round-off proper%ies  are reasonably

under control. This has been well accomplished in some areas9 and hardly

at all in others.

DOUBLE PRECISION

The precision of single-precision floating-point numbers seems

8



,

very adequate for most scientific and engineering purposes$being  at *he

level of #even decimals, However, a considerable num7oer of compu%ations

require still more precision in ths middle scenewhere,  just in order to

came out tith ordinary accuracy a% the end, As a result, System/360

has provided an easy mechanism for get%%ng a grea% deal more precision

in the computations, For this purpose a double word of 64 bits is used

to store a floating-point number of so-c&Led double precision or a

precision. In this representation, the sign and biased exponent are

found in the firs% word of the double-word, with precisely the same

interpretation as with single-precision f1oa%ing=point nwnberso The

L second word of the double-word consista of eight hexadecimal digi%s

immediately following the six found in the firs% word, There is no

L sign or exponen% in the second word. Thus a double=.>word  represents

a signed floating hexadecimal number with 14 significan% hexadecimal

.digits. As before, nonzero numbers are normalized so tha% the most

significant digit of the 14 is nonzero.,

Examples:

l.OL

long significand

= 41'100000 oooooooo\
L OOlL = 40 199999 PPPPPPPA

There is a full set of aA%hmetfc opiera%ions for bo%h single

and double-precision operations. Very crudely, for an example, single-

precision multiplication of single-precision factors %a&~ around 4 micro-

4 seconds, while that for double-precision factors %akee around 7 micro-

eeconds, For modes% problems Phe extra time is ccanple%ely lost in the

several seconds of time lost to systems and compilers, and the use of

double-precision is strongly recommended for all scientific ccmputation,

Normally the only possible disadvantage of using long precision is the

doubling in the amoun% of storage needed, If one has arrays with tens

of thousands of elements, the ex%ra storage may be very costly, &her-
. i. wise, it should no% matter,

since 16-14 f 10-y the double-precision numbers are crudely

equivalent in precision to 17 signffican%  decimal digitso

For a machine with the speed of the 360/67~  a number precision of

9
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six hexadecimal digits (sougLy de GXXP dltitzLm& B ) A. s: considered very Jm,

while a precision of IL& hexaciec.Lm;j,l dlglsa (roug~2y  17 det9mals) is

very adequa%e,
.Tr,Fi floa%Sng-pain%  arit'hmetic

hardware of System/>60  prcvides t,k poss;.ib.iiity of de%ec%ing when

numbers have gone outside thtr exponent range s%&ed above. The reader
~ 1-7

may think that a range from rc1igh.Q 9C 9 tB,o  107' B&olLd cover al.1

reasonable computa%ions, Wh.lie exponent overflow and exponent underflow

are no% very common, they can be %he eabse of very elusive errors,

The evaluation of a de%ermlnans  is a comm~~n  compcl%a%ion,  and for a matrix

of order 40 is quite rapidly done (of y01.1 know how), Lf The matrix

elements are of the quite reasonable magni%ade 10-33 %he magnitude of

'the de%erminan%  will be no larger than roicghly PO-9 (and probably

much smaller), well below Tzh4 range of sepsesentabie  floazing-point

numbers, Swh g~oblems are a frequen%  sou%~!e  of exponen%  underflow.

Sk Aall no+, discuss hefti the mehanfsms  of Aigol W :lk de%ec%ing

exponeiic: overflow and ~~Ierflow, for thege shou.ld  be wzit%en up fn

another place, Even titho~t these3 we see %ha%  floating-pofn% numbers

behave well for numbers -&ha+, are at Leas;%  10 66 times  as large as %he

largesTI  integer in %he sy&em,i  Hence ';%e ~3' fioating~~pc4nt  numbers

meets almost all the problems ?afsed  by integer verflow. And9 of '

course, i% permits th.e use of cl Pasg-k= set of' ra%ional  nmberb,,  tihich

do not even en%er -the in%eger syst.em,

i
ALGOLWREALS AND  LONGREALS

i

t
L

c

The Algol W manual tells how to represen%  real variables and

numbers  to %!ake advantage of both single-and double-pr,eeisfon, The

purpose of this section is to bring this I,nforma%ion  into rapport with

the hardware representation of numbers, If a ,variablt  X is declared

REAL, one word is set aside for its vaPti+ and it wfXi be stored in

single-precision floating-point fopm, if a var5abZ.e  .LS declared %c be

LONG ,23EALY  a double-word is se% a&ide %o hold fPs vaPlnesrJ  and 2% tall.1

be stored In double-precision ferrr;



.

If a number is written in one of the decimal forms without an L

at the end, it will be rounded to single-precision, no matter how many

digits are set down, Thus 3.1415926535897932 will be immediately

rcunded to single-precision in the program, and all the.Super%kQus

digits are lost at once.- - Thus the assignment statement

xx := 3.1415gz65358yj’gyz
will result in the double-word XX receiving a well-rounded form of fl

in the more significant half, and all zeros in the less significant

half! Thus one gets a precision of only approximately seven decimals

for the pain of writing 17, and this may well contaminate all the rest

of the computation.

If one wants XX to be precise to approximately full double precision,

one must write the statement in the form

xx := 3.1415926535897932L  0
With the declaration REAL X, the statement

X := 301415926535897932L
will result in X having a single-precision approximation to TT , as

the long representation of n is rounded upon assignment to X,

The reader should now go back and examine the specifications of

the types of various arithmetic expressions, as stated on pages 9, 10,

11 of the Algol W Notes, and oiA ppO 25) 26 of the Language Definition,
L Some of the less expected effects are the following: Suppose we have

declaractions

. RENL x, Y, z;

LONG REAL XX, YY1 ZZ;

INTEGER I, J, K;

Then X*Y is LONG REAL; l3-W is REAL; 1*X is LONG m;

The assignment statement

L

xx := x := y*z

will result in XX having a single-precision rounded version of Y*Z in

the more significant half, and zeros in the less significant word,

Moreover, I*1 is INTEGER, but I*+62 is REAL.

11
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I f  the  reader  unders tands  the  language Algol W and  t he  p r eced ing

pages  on number  representa t ion , he  should  have a  good bas is  for  under-

s t a n d i n g  t h e  e f f e c t s  o f  m a t h e m a t i c a l  a l g o r i t h m s  ., But he should always

remain wary of  what  a  computer  i s  ac tual ly  doing to  his  numbers9

12


