CS 89
ALGOL W (REVISED)

DECK SET-UP . 1 to 2

LANGUAGE DESCRIPTION pp. 1 to 49

ERROR MESSAGES . 1 to 9

NOTES . L to 4l

NUMBER REPRESENTATION pp. 1 to 12

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY
- MARCH 1968

$2.25

f—n

—

ALGOL W

DECK SET-uP

by

E.H.Satterthwaite, Jr,

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY
JANUARY 1968

Algol W Deck Set-Up
< Job Card >
//JOBLIB DD DSNAME=SYS2. PROGLIB,DISP=(OLD,PASS)
// EXEC ALGOLW

//ALGOLW .8YSIN DD *

[$ATGOL
**

< progranp
_%EOF
* < dats >
§ %EOF
/-x-
* Optional

Note . The maxi mum execution time or nunber of printed lines for the
job may optionally be specified on the $ALGOL card. Col unms 10-29

of that card are scanned for such specification according to the

follow ng syntax:

<limit specification> cv= <time limt, | <time limit>, <line limit>
<time limit> += <minutes specification2 |
<m nut es specification> : <seconds specification2
<ninutes specification> ::= <unsigned integer> | (enpty}
<seconds specification) ;:= <unsigned integer? | (enpty)
<line limit> r.= <unsigned integer> | (enpty)

r— I —

=y

An enpty field is given the value zero. | the time linit specified is

zero, termnation for excess tine is controlled by the #s jcb card. O her -

wise, the programis automatically termnated if necessary at the end
of the indicated time. Sinilarly, if the line linit specified is zero,
termination for excess lines is controlled by the @ job card; otherw se,
the program is automatically termnated if necessary after the indicated

nunber of |ines have heen printed.

r

— r

ALGOL W

LANGUAGE DESCRIPTION

by

Henry R. Bauer
Sheidon Becker
Susan L, Graham

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY
JANUARY 1968

"A Contribution to the Devel opnent
of ALGOL" by N klaus Wrth and ¢+ A R
1)

Hoare ’ was the basis for a conpiler de-
vel oped for the IBM 360 at Stanford Univer-
sity. This report is a description of the
inpl enented | anguage, ALGOL W Historical
background and the goals of the |anguage

may be found in the Wrth and Hoare paper.

1) Wrth, Niklaus and Hoare, C. A R., "A
Contribution to the Devel opment of ALGOL",
Comm ACM 9, 6(Junel1966), pp. 413-431.

CONTENTS

TERM NOLOGY, NOTATION AND BASI C DEFI NI TI ONS. 1
1.1, Notation . . oooiiiiiiiionronuuorosannesannnnesaaal

1.2, Definitions L e 1
SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES............... '
2.1, Basic Symbols

2.2, SyNtactiC EntitiesS...ooeesacoocsosnsesesossnsnnnns 5
IDENTIFIERS « « « v s v e s e auoosnoensoonsasoonnsosasosasonnnananses 6
VALUES AND TV RS ¢t v e veoseaneaneoeensosonesesonenoeassoeaenns 9
4. 1. NUMDErsS +ovosesonsssasnosso.ososasocsasaes saveeeae 10

4.2, Logical Valuesc.coviiiiiniieioninonassn e 11

4,3, Bit SEQUENCES . .iotriiorreoeonnosoroconanneesonans 11

44, SEIings «vvvuvvt ivuieonoeenoeaioenaneatnannennnans 12

4.5. References «c.o...-. seeeesseatdtsseanatonans RN 13
DECLARATIONS ..o+ u.. P 13
5.1, Simple Variable Declarations ..c.cooteioosecoresns 13

5.2. Array Declarationscciivrooerruosoonnnnns 15

5.3, Procedure Declarationsoeeeeeonveronncosonas 16

5.4, Record Cass Declarationsceoeeveooeeaon “...20
EXPRESSTIONS + e e v eonuvonsnnnocennnacencneoonnneosnnsoonsases 20
6.1, VariabhleS »«ccesoounsosseacansnonosaanansosancensss 22

6.2. Funct ion DesSignatorsc.oeeneeeoeeeeeeceosens 23

CONTENTS (cont.)

6.3, Arithmetic EXPresSions «eeeeeerereneneenennnonns .24
6.4. logical Expressions Mo .. 28
6.5. Bit EXPressions ciiiiiiiiiiiiiiiiiiiiiieaa 30
6.6. String EXpressionsiiiiiiiiiiiiien, veverda3l
6.7. feference Bxpressions 5
6.8. Precedence of Qperators 33
STATEMENTS + + ¢ ettt e i oeanes et ens e e anenseesonennnnnssenes 2
1.1 BockS. .o %
7.2, Assignment Statements el %
7.%. DProcedure Statementsooiiiiiiiiiiian, oy el BT
T4 Goto SALEMBMIS . Lo v o e %G
7.5, 1f Statemernts L e P P
7.0, CASEe StabemaribSe s eee e nenneeneneeeeoneennnneens L1
7.7. lterative Statements, L2
7.8, Standard Procedul®s . + vevrertarnneneerenenneeeens it
7.8.1. Read Statements..................... 45
7.8.2. Write Statements.. sevevereennernnn.. 4 6
STANDARD FUNCTIONS AND PREDECLARED | DENTIFIERS....... e 1Y
8.1. Standard Transfer Functions Lé
8.2, Standard Functions of Analysis «.....evvvviennne. 47
8.3, Overflow and Underflowcoooiet, 08
8.3.1. Predeclared VariableS....evvvee.vrn.. 48

8.h.
8.5.

CONTENTS (cont.)

8.3.2. Standard Message Function.......... 48
Output Field Sizes -....ooviviiiiiii

Time FUNCEI ON v v vt e e e e e e e e

iv

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS

The Reference Language is a phrase structure language, defined by
a formal metalanguage. This metal anguage nakes use of. the notation and
definitions explained below The structure of the |anguage ALGOL W
I's determned by:

(1) v, the set of basic constituents of the |anguage,
(2) U, the set of syntactic entities, and
(3) P, the set of syntactic rules, or productions.

1.1. Notation
A syntactic entity is denoted by its name (a sequence of letters)

enclosed in the brackets < and >. A syntactic rule has the form
<A = x

where <A> is a member of U, x is any possible sequence of basic con-
stituents and syntactic entities, sinply to be called a "sequence".

The form
<A =X | Y l ces | z

Is used as an abbreviation for the set of syntactic rules

<A =X
<A =y
<A 1=z

1.2, Definitions

1. A sequence x is said to directly produce a sequence y if and

only if there exist (possibly enpty) sequences u and w, so that
either (i) for sone <& in U, X = Ww, y = uvw, and <> ::=
visarulein®;or (ii) x=uw, y =uwand v is a "coment"

(see bel ow).

2. A sequence x is said to produce a sequence y if and only if
there exists an ordered set of sequences s[O], s[1], . . . , s[n],
so that x = s[0], s[n] =y, and s[i-1] directly produces s[i] for

all i =1, ..., n

3. A sequence x is said to be an ALGOL Wprogramif and only if
its constituents are menbers of the set ¥, and x can be produced

from the syntactic entity <program>.

The sets vV and U are defined through enuneration of their nenbers
in Section 2 of this Report (cf. also &.k,). The syntactic rules are
gi ven throughout the sequel of the Report. To provide explanations
for the meaning of ALGOL Wprograns, the letter sequences denoting
syntactic entities have been chosen to be English words describing
approxi mtely the nature of that syntactic entity or construct, Were
words which have appeared-in this manner are used el sewhere in the
text, they refer to the corresponding syntactic definition. Al ong
with these letter sequences the symbol T may occur. It is understood
that this symbol nust be replaced by any one of a finite set of English
words (or word pairs). Unless otherwi se specified in the particular
section, all occurrences of the synbol T within one syntactic rule

must be replaced consistently, and the replacing words are

I nt eger | ogi ca

real bi t

| ong real string
conpl ex reference
| ong conpl ex

For exanple, the production
<J term> ::= <J factor> (cf. 6.3.1.)
corresponds to

<i nteger term> ::= <integer factor>
<real term> t+= <real factor>

<long real factor>
<conpl ex factor>
<long conplex factor>

il

<long real term>
<conpl ex term>
<l ong conplex term> :::

1

u

The production

<TO primary> ::= |ong <Tl pri mary> (cf. 6.3.1. and
table for |ong
6.3.2.7.)

corresponds to

<long real primry>

i

long <real prinmary?2

<long real primry> ::= |ong <integer primary>
<long conplex primary> ::= | ong <conplex primary>

Tt is recogni zed that typographical entities exist of |ower order
than basic synbols, calied characters. The accepted characters are
those of the |IBM System 30 EBCDI C code.

The synbol comment followed by any sequence of characters not
containing semcolons, followed by a semicolon, is called a coment
A coment has no effect on the nmeaning of a program and is ignored

during execution of the program An identifier (cf. 3.1.) i mediately

3

fol lowing the basic symbol end is also regarded as a comment.

The execution of a program can be considered as a sequence of
units of action. The sequence of these units of action is defined as
the eval uation of expressions and the execution Of Statements as de-
noted by the program 1 the definition of the inplenented |anguage
the evaluation or execution of certain constructs is either (1) de-
fined by System 360 operations, e.g., real arithmetic, or (2) left
undefined, e.g., the order of evaluation of arithnetic primaries in

expressions, or (3) said to be not valid or not defined.

2. SETS OF BASI C SYMBOLS AND SYNTACTI C ENTI TI ES

2.1. Basic Synbols

Alslclolelrlclulr]q]
Q!RISJTIUIVIWIXIYIzlKIL‘MIMOIPI

ol1lels]uls|el7]8]9]|

-

true | false |" | null | # | 1|
integer | real | conplex | logical | bits | string |
reference | long real | long conplex | array |

procedure | record |
R];Iul({)lbeQMen‘g__lifwl'then|e|sel

L S |

case | of [+ |- |~ |/]*] div | rem | sbx | <kl | ig |
absllonglshorr_t !Edl_?_l_”_“'lllt"=l<’. ~
< = , > [> = ’ e [

:= | goto | go to | ror | step | until | do [while |

comment l value l result

Al underlined words, which we call “reserved words" ., repre-

sented by the sane words in capital letters in an actual program, Wth

nc intervening blanks

Adjacent reserved words, identifiers (cf. 3.1.) and nunbers nust have
no blanks and nust be separated by at |east one blank space. Qtherwse
bl anks have no neaning and can be used freely to inprove the read-

ability of the program

2.2. Syntactic Entities

(with corresponding section numbers)

<actual paraneter list> 7.3 | <formal type> 5.3
<actual paraneter> 7.3 | <go to statement> 7.4
<bit factor> 6.5 | -<hex digit> 4.3
<bit primary> 6.5 | <identifier list> 3.1
<bit secondary> 6.5 | <identifier> 3.1
o D .5
<bit term> 6.5 | -<inmaginary number> 4.1
<bl ock bvody> 7.1 | <increnment> 7.7
<bl ock head 7.1 | <initial value> .7
<bl oc& 7.1 | <iterative statement> 7.7
<bound pair list> itz | <l abel definitiom> 7.1
<bound pair> 5.2 | <l abel identifier> 3.1
<case clause> 6 <letter> 3.1
<case statement> 76| <linit> 7.7
<control identifier> 3.1 | <logical elenent> 6.4
<declaratior> 5 <l ogi cal factor> 6.4
<digit> 3.1 | <logical primary> 6.4
<dimension specification> 5.3 .
<enpty> see page 3k <l ogi cal term> 6.4
<equality operator> 6.4 | <logical value k.2
<expression |ist> 6.7 | <l ower bound> 5.2
<field list> j 0t | '<nuLl reference> 4.5
<for clause> 7.7 | <procedure declaration> 0.3
<for list> 7-T | <procedure heading> 2.3
<tormal array parameter3 5:3 | <procedure identif ier> 3.1
<formal parameter list> 5.3 | <procedure statenent> 7:3
" <formal paramcter segment> 5.3 | <progranm> ' 7

NIt

r-

s s

<proper procedure body>

<proper procedure
declaration>

<record class declaration>
<record class identifier>

<record class identifier
list>
<record designator>

<relatiorm>

~ <relational operator>

<scale factor>

<slgr>

<sinple bit expression>
<sinple |ogical expressiom

<sinple reference
expressi on>

<sinple statement3

<sinple string expressior>
<sinmple 7T expressior>
<sinple 7 variable
<sinple type=>

<sinple variable
declaration>

<statenent |ist>
<st at enent >
<string primary>

<string>
<subarray designator |ist>

<subscript>

3. IDENTIFIERS

3.1. Syntax

<identifier> :

\N
S Y

a1
O

NN F Ao v oy oo
- =

YTP?O\O\\?O\
., .

7.6

6.6
L.k
7.3
6.1

R I TN 9

<subscript list>
<substring designator>

<J array declaration>

<T array designator>

<J array identifier>

<T assi gnnment statement>
<T expression list>

<T expression>

<J factor>

<T field designator>

<7 field identifier>

<T function designator>
<¥ function identifier>
<7 function procedure body>

<J function procedure
declaratiom>

<J left parts

<T nunber>

<7 primary>

<T subarray designator>
< term>

<T variable>

<J variable 1dentifier>
<unscaleq Ieal>

<upper bound>

<while clause

‘<7 variable identifier>:: = <identifier>

NN W on oo
N st I

6.3
6.1
3.1
6.2
3.1
5.3

5.3
7.2
4.1
6.3

7.3
6.3

6.1
3.1

4.1
5.2
77

= <letters | <identifier> <letter> | <identifier> <digit>

<T array identifier> ..z <identifier>

<procedure identifier> .- <jdentifier>

<T function identifier> ... <jdentifier>

<record class identifier> ::= <identifier>

<T field identifier> ::= <identifier>

<l'abel identifier> .= <jdentifier>

<control identifier> .- <jdentifier>

<letter> ::=AlBlchlE[F{GIH[I;JIK]L[MI
Nlolelalr|s|olulv|w|x]|y]z

<digit>:i= o 1]2|35]4]5]|6[7]8]9
<identifier list> .= <identifier> | <identifier list> 6 <identifier>

r——

3.2, Semantics
Variables, arrays, procedures, record classes and record fields
are said to be quantities. |dentifiers serve to identify quantities,

or they stand as labels, fornmal parameters or control identifiers.

—

Identifiers have no inherent neaning, and can be chosen freely in the
- reference |anguage. |In an actual program a reserved word cannot be

used as an identifier

—————Y

Every identifier used in a program nust be defined. This is

achi eved through

(a) a declaration (cf. Section 5),if the identifier identifies a
quantity. It is then said to denote that quantity and to be a
Tvariable identifier, T array identifier, T procedure identifier
T function identifier, record class identifier or T field iden-
tifier, where the synbol T stands for the appropriate word re-
flecting the type of the declared quantity;

(b) a label definition (cf. 7.1.), if the identifier stands as a

— r—

label. It is then said to be a label identifier:

(c) its occurrence in a formal parameter list (cf. 5.3.). It is then
said to be a formal parameter

(d) its occurrence following the synbol for in a for clause (cf. 7.7.).
It is then said to be a control identifier;

(e) its inplicit declaration in the | anguage. Standard procedures,
standard functions, and predefined variables (cf. 8.3) may be

considered to be declared in a block containing the program.

The recognition of the definition of a given identifier is de-

termned by the follow ng rules:

Step 1. If the identifier is defined by a declaration of a
quantity or by its standing as a label within the snallest block
(ef. 7.1.) enbracing a given occurrence of that identifier, then
it denotes that quantity or label. A statement followng a pro-
cedure heading (cf. 5.3.) or a for clause (cf. 7.7.) is considered

to be a bl ock.

Step 2. Qherwise, if that block is a procedure body and if the

given identifier is identical with a formal paraneter in the asso-
ciated procedure heading, then it stands as that formal parameter.
Step 3. Qherwise, if that block is preceded by a for clause

and the identifier is identical to the control identifier of

that for clause, then it stands as that control identifier

G herwi se, these rules are applied considering the smallest

bl ock enbracing the block which has previously been considered

If either Sstep 1 or step 2 could lead to nore than one definition,
then the identification is undefined.

The scope cf a quantity, a Label, & formal paraneter, or a con-
trol identifier is the set of statements in which occurrences of an
identifier may refer by the above ruies to the definition of that

quantity, label, formal paraneter or control identifier.

3.3. Exanpl es,
I
PERSON
ELDERS IBLING
x15, x20, x25

4 VALUES AND TYPES

Constants and variables (cf. €.1.) are said to possess a value.
The val ue of a tvonstant i S determined by the denotation of the con-
stant . Inthe language, cliconstants (except references) have a
reference denotation f{ef. 4.1.-4 Lk.). Tre value of a variable 1s the
one nost recently assignzd to that variable. A value is (recursively)
defined as either a simpie value Or a structured value (an. ordered set
of one or nore values). Everv vaine Ls said to be of a certein type.

The following types of sinple velues are distinguished:

integer: the value is a 32 bit integer,

real: the value is a 3 bit floating point nunber,
Long real: the value is a 64 bit floating point nunber,
conplex: the value is a complex nunber conposed of two

tamgnp| ex: the value is a conplex nunber conmposed of two
long real nunbers,

logical: the value is a |ogical value,
bits: the value is a |inear sequence of 22 bits,

string: the value is a linear sequence of at most 256 char-
acters

reference: the value is a reference to a record.
The follow ng types of structured values are distinguished:

array: the value is an ordered set of values, all of identi-
cal sinple type

record: the value is an ordered set of sinple values.

A procedure may yield a value, in which case it is said to be a
function procedure, or it may notiyield a. value, i N which case it IS
called a proper procedure. The value of a function procedure is de-
fined as the value which results from the execution of the procedure
body (cf. 6.2.2.).

Subsequently, the reference denotation of constants is defined.
The reference denotation of any constant consists of a sequence of
characters. This, however, does not inply that the value of the de-
noted constant is a sequence of characters, nor that it has the pro-

perties of a sequence of characters, except, of course, in the case

of strings.
4.1. Nunbers
4.1.1. Syntax
<long conpl ex number> ::= <conpl ex number>L
<conpl ex nunmber> ::= <inmginary nunber>
<i maginary nunber> ::= <real number>I | <integer number>I

10

r

et

=

mul tiplied by the unscaled real or integer nunber preceding it.

<long real nunber> ::= <real number>L | <integer numbersL

<real number> ! := <unscaled real> | <unscal ed real> <scal e factor> |
<integer number> <scale factor> | <scale factor>
<unscal ed real> ::= <integer number> <integer number> |
*<integer number> | <integer nunmber> .
<scale factor> : = '<integer nunber> | '<sign> <integer nunber>
<integer nunber> ::= <digit> | <i nteger number> <digit>
<sigm> ::= + | -

4,1.2. Semantics

Nunbers are interpreted according to the conventional decimal

notation. A scale factor denotes an integral power of 10 which is

Each

nunber has a uniquely defined type. (Note that all <T number>s are

unsi gned.)

L.1.3. Exanpl es

1 .5 11
0100 1'3 0.671
3. 1416 6.02486"+23 1IL

2.71828182845904523 53602871, 2.3'-6

k.2, Logical Val ues

L.2.1. Syntax

<l ogical value> ::= true | false

L.3. Bit Sequences

4.3.1. Syntax

<bit sequence> ::= # <hex digit> | <bit sequence> <hex digit>
<hex digit>::=0 |1 2|54 |5]6]7[8]9|a]s|
clplEe|rF

11

Note that 2 |... IFcorrespondstoelOI. Co i]’»5lo'

4.2.2. Semantics

The number of bits in a bit sequence is 32 or 8 hex digits.. The
bit sequence is always represented by a 32 bit word with the specified
bit sequence right justified in the word and zeros filled in en the

left.

4.3.3. Exanples

#4F = 0000 0000 0000 0000 0000 0000 0100 1111
#9 = 0000 0000 0000 0000 0000 0000 0000 1001
4.4. Strings
L.L.1. Syntax
<string> ::= "<sequence of characters>"

4.4.2. Semantics

Strings consist of any sequence of (at mast 256) characters ac-
cepted by the System 360 enclosed by ", the string quote, 1If the
string quote appears in the sequence of characters it nust be inmme-
diately followed by a second string quote which is then ignored. The
nunber of characters in a string is said te Be the length of the

string.
4.4.3. Exanples

" JOI_INH
"mis the string of length 1 censisting of the string
quot e.

12

4.5. References
4.5.1. Syntax

<null reference3 ::= null

4.5.2. Semantics
The reference value null fails to designate a record; if a refer-

ence expression occurring in a field designator (cf. 6.1.) has this

value, then the field designator is undefined.

5. DECLARATI ONS

Declarations serve to associate identifiers with the quantities
used in the program to attribute certain permanent properties to
these quantities (e.g. type, structure), and to determne their scope.
The quantities declared by declarations are sinple variables, arrays,
procedures and record classes.

Upon exit froma block, all quantities declared or defined wthin

that block |ose their value and significance (cf. 7.1.2. and 7.4.2.).

Synt ax:

<declaratior> ::= '<sinple variable declaration> | <¥ array
declaration> | <procedure declaration> |
<record class declaration>

5.1. Sinple Variable Declarations

5.1.1. Syntax

<sinple variabl e declaratior> ::= <sinple type> <identifier |ist=>
<sinple type> ::= integer | real | long real | complex | | ong
conplex | logical |bits | bits (32) |

13

string | string (<integer>) | reference
(<record class identifier Iist>)
<record class identifier list> ::= <record class identifier> |
<record class identifier list> ,
<record class identifier>
5.1.2. Semantics
Each identifier of the identifier list is associated with a
variable which is declared to be of the indicated type. A variable is
called a sinple variable, if its value is sinple (cf. Section 4). If
a variable is declared to be of a certain type, then this inplies that
only val ues which are assignnent conpatible with this type (cf. 7.2.2.)
can be assigned to it. It is understood that the value of a variable
is equal to the value of the expression nost recently assigned to it.
A variable of type bits is always of length 32 whether or not
the declaration specification is included
A variable of type string has a length equal to the unsigned
integer in the declaration specification. |f the sinple type is
given only as string, the length of the variable is 16 characters.
A variable of type reference may refer only to records of the

record classes whose identifiers-appear in the record class identi-

fier list of the reference declaration specification.

5.1.3. Examples

integer I, J, K M N
real X, VY, Z

| ong conplex C

Logi ca
bits G H

14

— r—

string (10) S, T
reference (PERSON) JACK; JILL

5.2, Array Declarations

5.2.1. Syntax

<T array decleration> ::= <sinple type> array <identifier list>
(<bound pair 1ist>)
<pound pair lists ::= <bound pair> |<bound pair list>,<bound

pai r>
<bound pair> ::= <lower bound> :: <upper bound>
<l ower bound> ::= <integer expression>
<upper bound> ::= <integer expressior>

5.2.2, Semantics

Each identifier of the identifier list of an array declaration is
associated with a variable which is declared to be of type @ray,
variable of type array is an ordered set of variables whose type'is the
gimple type ,precedi ng the synbol array, The dinmension of the array is
the number of entries in the bound pair Iist,

Every elenent of an array is identified by a list of indices.
The indices are the integers between and including the values of the
| ower bound and the upper bound, Every expression in the bound pair

list is evaluated exactly once upon entry to the block in which the
declaration occurs. The bound pain cxpressions can depend only on
vari abl es and procedures global to the block in which the declaration
occurs . In order to be valid, for every bound pair, the value of' the

upper bound must not be |ess than the value of the |ower bound.

5.2.3. Exanples

integer array H(1::100)

15

real array A Bil::M, 1. :N
string (12) array STREET, TOWN, CITY { J: :K + 1!

5.%. Procedure Declarations ’

5 0 31 Syntax

<procedure declaratior> ::= <proper procedure declaration> |
<T function procedure declarat ior>
<proper procedure declaration> ::= procedure <procedure heading>;
<proper procedure body>
<T function procedure declaration> : := <sinple type> procedure
<procedure heading>;
<T function procedure body>
<proper procedure body> ::= <statenent>
<T function procedure body> : 3= <J expression> | <bl ock body>
<J expression> end
<procedure heading> = <ident if ier> | <ident if iex> (<formal
parameter list;>)
<formal parameter list> ::= <formal parameter segnent> |
<fornmal paraneter 1list>; <fornal
paraneter segnent>
<formal paranmeter segment> ::= <formal type> <identifier list> |
<formal array parameter>
<formal type> 1= <sinple type> | <simple type> value | <sinple
type> result | <sinple type> value result |
<sinple type> procedure | procedure
<formal array parameter> : := <sinple type> array <identifier

i st> {<dimension specification>)

<di nensi on specif icat iom> ::= * | <di mension specification> , *

5.3%3.2. Semantics
A procedure declaration associates the procedure body with the

identifier immediately following the synbol procedure. The principal

16

part of the procedure declaration is the procedure body. Qher parts
of the block in whose heading the procedure is declared can then cause
this procedure body to be executed or evaluated. A proper procedure
is activated by a procedure statenent (cf. 7.3.), a function procedure
by a function designator (cf. 6.2.). Associated with the procedure
body i s a heading containing the procedure identifier and possibly a

list of formal paraneters.

5.%.2.1. Type specification of formal parameters. Al formal para-
meters of a formal parameter segment are of the same indicated type.
The type nust be such that the replacement of the formal parameter by
the actual parameter of this specified type leads to correct ALGOL W

expressions and statements (cf. 7.3.2.).

5.3.2.2. The effect of the symbols value and result appearing in a

formal type is explained by the following rule, which is applied to
the procedure body before the procedure is invoked:
(1) The procedure body is enclosed by the synbols begin and end
if it is not already enclosed by these synbols;
(2) For every formal parameter whose formal type contains the

synbol value or result (or both),

(a) a declaration followed by a semicolon is inserted after
the first begin of the procedure body, with a sinple
type as indicated in the formal type, and with an iden-
tifier different fromany identifier valid at the place
of the declaration.

(b) throughout the procedure body, every occurrence of the

17

formal parameter identifier is replaced by the identifier
defined in step 2a;

(3) If the formal type contains the symbol value, an assignnent
statenent (cf. 7.2.) followed by a semcolon is inserted
after the declarations of the procedure body. Its left part
contains the identifier defined in step 2a, and its expres-
sion consists of the formal parameter identifier. The sym-
bol value is then deleted;-

(4) If the formal type contains the synbol result, an assignnent
statenent preceded by a semcolon is inserted before the
synbol end which termnates a proper procedure body. In
the case of a function procedure, an assignnent statement

Is inserted after the final expres-
sion of the function procedure body. Its left part contains
the formal paraneter identifier, and its expression consists
of the identifier defined in step 2a. The synbol result is

then del et ed.

5.3.2.3. Specification of array dinensions. The number of "*"'s
appearing in the formal array specification is the dinmension of the

array paraneter.

5 0 33 Exanples
procedure | NCREMENT;, X := X+1

real procedure MAX (real value X, Y);
Iif X< Ythen Y else X

18

procedure COPY (reai_atray U, V (¥,%); integer value A B);
far | 1 untilJ A do
far J := 1 until B dc_) U(z,J) == V(1,J)

real procedure HORNER (real.array A (*); integer val ue N
real value X;
begin real S; S := 0;
for I :=0wuntil Ndo S:=8S* X+ A(l);
S

end

long real procedure SUM (integer. K, N long real X);
begin long real Y; Y :=0; K:= N
while K> =1 dc
begin Y :=Yy +X; K:= K-1
end;
Y

end

reference (PERSON) procedure YOUNGESTUNCLE (reference (PERSON)
begin reference (PERSON) P, M
P := YOUNGESTOFFSPRING (FATHER (FATHER (R)));
while (P - =null) and (-1 MALE (P)) or_
(P = FATHER (R))"
P := ELDERSIBLING (P);

M := YOUNGESTOFFSPRI NG (MOTHER (MOTHER (R)));

while (M= =null) and (= MALE (M) do
M := ELDERSIBLING (M;

= null then M el se

—h

i

P
M= null then P el se
AGE(P) < AGE(M . then P else M

—h

e

—n

I

end

- 19

5.4. Record O ass Declarations

5.4.1. Syntax
<record class declaration> ::= record <identifier> (<field list>) -
<field list> ::= <sinple variable declaration> | <field list> ;

<sinpl e variabl e declaration>

5.4.2. Semantics

A record class declaration serves to define the structural pro-
perties of records belonging to the class. The principal constituent
of a record class declaration is a sequence of sinple variable declara-
tions which define the fields and their sinple types for the records
of this class and associate identifiers with the individual fields.
A record class identifier can be used in a record designator (cf. 6.7.)

to construct a new record of the given class.

5.4.3, Exanmpl es

record NODE (reference (NODE) LEFT, RIGHT)
record PERSON (string NAME, integer AGE, |ogical MALE
reference (PERSON) FATHER, MOTHER,, YOUNGESTOFFFSPRING,
ELDERSI BLI NG

6. EXPRESSI ONS

Expressions are rules which specify how new values are conputed
from existing ones. These new val ues are obtai ned b&/ performng the
operations indicated by the operators on the val ues of the operands.
Several sinple types of expressions are distinguished. Their struc-

.ture is defined by the following rules, in which the synbol T has to

20

be replaced consistently as described in Section 1, and where the
triplets TO, Tl, 12 have to be either all three replaced by the sane

one of the words

| ogi ca
bi t
string
reference
or by any combination of words as indicated by the follow ng table,

whi ch yields TO gi ven Tl and Ies

Uz :

1 integer real complex
I nt eger i nteger real conpl ex
real real real conpl ex
conpl ex conpl ex conpl ex conpl ex

TO has the quality "long" if either both Tl and Ié have t hat

quality, or if one has the quality and the other is "integer"".

Synt ax:

<J expression> ::= <sinple T expression> | <case cl ause
{<T expression |ist>)

<TO expression> s:= <if clause> <sinple Tl expressior> ngg
<3'2 expressior>

- <T expression list>' ::= <J expressiorn>

<J, expression list> ;= <Tl expression list> , <J, expression>

<if clav - ::= if <logical cxpression> then .

<case clause> ::= case <integer expression> of

The operands are either constants, variables or function designa-
tors or other expressions between parentheses, 'The evaluation of
-operands other than constants may involve smaller units of action such
as the evaluation of other expressions or the execution of statements,,

21

The value of an expression between parentheses is obtained by evaluating

that expression. |f an operator has two operands, then these operands
may be evaluated in any order with the exception of the logical operators
di scussed in 6.4.2.2. The construction

<if clause> <simple Tl expression> el se <, expressi on>
causes the selection and evaluation of an expression on the basis of
the current value of the logical expression contained in the if clause.
I'f this value is true, the sinple expression following the if clause
is selected, if the value is false, the expression following else is
selected. |If Tl and T, are sinple type string, both string expressions
nmust have the same length. The construction

<case clause> (<T expression |ist>)
causes the selection of the expression whose ordinal number in the
expression list is equal to the current value of the integer expression
contained in the case clause. |n order that the case expression be
defined, the current value of this expression nust be the ordinal number
of sone expression in the expression list. |f T is sinple type string

all the string expressions nust have the sane |ength.

6.1. Vari abl es

6.1.1. Syntax

<simple T variable> ::= < variable identifier> | < field designator> |

<J array designator>
<J "variable> ::= <simple T vari abl e>

<string variable> ::= <substring desi gnator>

<T field designator> ::= <7 field identifier> (<reference expression>)
<T array designator> ::= <I array identifier> (<subscript list;>)
<subscript list> ::= <subscript> | <subscript list> <subscript>
<subscript> ::= <integer expression>

22

6.1.2. Semantics

An array designator denotes the variable whose indices are the
current values of the expressions in the subscript list. The value of
each subscript nmust lie within the declared bounds for that subscript
position.

A field designator designates a field in the record referred to

by its reference expression. The sinple type of the field designator

is defined by the declaration of that field identifier in the record
class designated by the reference expression of the field designator

(cf. 5.4.).

6.1.3. Exanples

X A(T) M(I+J, | -J)
FATHER (JACK) MOTHER (FATHER (JTLL))

6.2. Function Designators

6.2.1. Syntax

<T function designator> ::= <7 function identifier>|<T function
identifier> (<actual paraneter 1list>)

6.2.2. Semantics .

A function designator defines a value which can be obtained by a
process performed in the follow ng steps:

Step 1. A copy is nade of the body of the function procedure

whose procedure identifier is given by the function designator

and of the actual parameters of the latter.

Steps 2, 3, 4, As specified in 7.3.2.

23

Step 5. The copy of the function procedure body, nodified as in-
dicated in steps 2-4, is executed, The value of the function
designator is the value of the expression which constitutes or is
part of the nodified function procedure body. The sinple type
of the function designator is the sinple type in the corresponding

function procedure declaration.

6.2.3. Exanpl es

MAX (X %% 2, Y ** 2)

SUM (1, 100, H(1))

SUM (I, M SUM (J, N, A(TyJ)))
YOUNGESTUNCLE (JILL)

SUM (I, 10, x(1) * ¥(I))
HORNER (X, 10, 2.7)

6.3. Arithnmetic Expressions

6.3.1. Syntax

In any of the following rules, every occurrence of the synbol 7

must be systematically replaced by one of the follow ng words (or

wor d pairs):

i nteger .
real

| ong real
conpl ex

| ong conpl ex

The rules governing the replacenent of the synbols Tor J’l and 72 are

given in 6.3.2.

<sinple T expression> ::= <J term> | + <7 term> | - <7 term>

2k

r—

—

<simple T

o EXPression> ::: <simple 7. expressiom> + <T, term> |

<simple T. expressiom> -- <J, term>

<T term> ::= <J factor>

<TO term> = <3'l term> *<79 factor;,"

<TO term> = <3’l term> / <"J’2 factor>

<integer term>::- <integer tern> div <integer factor> |

<integer term> rem <integer factor>
<T, factor> ::= <T primary> | <7, factor> ** <integer primary>
<T, Primary> ::= abs <7, primry> | abs <7, nunber>
<J, primary> ::= |ong <7, primary>
<3'O primary> ::= short <Tl primary>

< primary> ::=<J variable> | <7 function designator> |
{(<T expressZon>) | <I nunber >
<integer primary> ::= <control identifier>
6.3.2, Semantics
An arithnetic expression 33 a rule for conputing a nunber.
According to its simple type it is called an integer expression,
real expression, |ong real expression, complex expression, or |ong

conpl ex expression.

6.3.2.1. The operators +, -, <, and / have the conventional neanings
of addition, subtraction, multipiication and division. |n the rele-
vant syntactic rules of 6.3.1 esymbolsTO, :rl and 72 have to be re-
pl aced by any comnbination of words according to the follow ng table
whi ch indicates TO for any combinaticn Of Tl and IZ'

Qperators + | -

V’ i nteger real conpl ex

teger integer reali conpl ex
real real real conpl ex
conpl ex complex conpl ex complex

TO has the quality "long" if both Tl and 72 have the quality

"long", or if one has the quality "long" and the other is "integer"

Qperator *
>~ T. .
7 2 | integer real conpl ex
i nt eger i nt eger | ong real | ong conpl ex
real | ong real | ong real | ong conpl ex
conplex | long complex long conplex long conplex

T, or T, having the quality "long" does not affect the type of

the result.
Qperator /
T .
Tl 2 I nt eger real conpl ex
i nt eger real real conpl ex
real real real conpl ex
conpl ex conpl ex conpl ex conpl ex

T, has the quality "long" if both Tl and T, have the quality

"long", or if one has the quality "long" and the other is "integer".

6.3.2.2. The operator "-" standing as the first symbol of a sinple
expression denotes the nonadic operation of sign inversion. The type
of the result is the type of the operand. The operator "+" standing
as the first synbol of a sinple expression denotes the nonadic opera-

’

tion of identity.
6.3.2.3. The operator div is mathematically defined (for B # 0) as

A div B=SGN (AxB) XD (abs A abs B) (cf. 6.3.2.6.)

—

26

where the function procedures SGN and D are declared as

integer procedure SGN (integer value A);
if A<O0then -1 else 1,

integer procedure D (integer value A, B);
if A<Bthen O else D(A-B, B) + 1

6.3.2.4. The operator rem (renainder) is mathematically defined as

6.3a2.5 . The operator ** denotes exponentiation of the first operand
to the power of the second operand. In the relevant syntactic rule of
6.3,1. the synbols IO and Tl are to be replaced by any of the foll ow

ing conbinations of words:

To I1
real i nt eger
real real
conpl ex conpl ex

To has the quality "long" if and only if J'l does,

6.3.2.6. The nonadi ¢ operator abs yields the absolute value or nodul us

of the operand. In the relevant syntactic rule of 6.3.1. the synbols 3‘0

and :rl have to be replaced by any of the following conbinations of words:

T 0 3'1
integer integer
real real
real ~complex

| f Tl has the quality "long", then so does :ro.

27

6.3.2.7. Precision of arithmetic. |f the result of an arithmetic

operation is of sinple type real, conplex , long real, or long conplex

then it is the mathematically understood result of the operation per-
formed on operands which nmay deviate from actual operands.

In the rel evant syntactic rules of 6.3.1, the synbols TO and :rl
must be replaced byany of the follow ng conbinations of words (or

word pairs):

Qperator |ong

T0 : - Il
long resal real -
long real integer
long complex | complex

Operator short

Ty I T,
real long real
complex long complex

6.3.3. Exanples

AL *8(1)
EXP(-X/(2 * SIGWA)) / SQRT (2 * Sl GW)

6.4. Logical Expressions

6X. 1. Syntax
In the following rules for <relation> the synbols To and Tl mst

either be identically replaced by any one of the follow ng words:

28

bi t
string
ref erence

or by any of the words from

conpl ex

| ong conpl ex
real

| ong real

i nt eger

and the synbol s Te or 13 must be identically replaced by string or

must be replaced by any of real, long real, integer.

<sinple |ogical expressior> ::= <logical elenment> | <relation>
<logical element> ::= <logical term> | <logical elenent;> or_
<l ogi cal term>
<logical term> ::= <logical factor> | <logical term> and
<l ogi cal factor>
<logical factor> ::= <logical primry=>| = <logical primary>
<l ogi cal primary> ::= <logical value | <logical variable |

<l ogi cal function designator> |
(<l ogi cal expression>)
<relation> ::= <sinple To expression> <equal ity operator>
<simple 3’1 expressior> l <l ogi cal element>
<equality operator> <logical el enent> |

<simple reference expression> is
<record class identifier> |
<simple T,,'_expression> <rel ational operator>
<gimple T, expression>
<relational operator> ::=< |<=|>=|>
<equal ity operator> ::==| o =
6.4.2. Semantics

A logical expression is a rule for conputing a |logical. value.

29

6.4.2.1. The relational operators represent algebraic ordering for
arithnmetic arguments and EBCDIC ordering for string argunments. If two
strings of unequal length are conpared, the shorter string is extended
to the right by characters |less than any possible string character,
The relational operators yield the logical value true if the relation
is satisfied for the values of the two operands; fal se otherwise. Two
references are equal if and only if they are both null or both refer
to the same record. Two strings are equal if and only if they have

the same length and the same ordered-sequence of characters.

6.4.2.2. The operators - (not), and, and or, operating on | ogi cal
values, are defined by the follow ng equival ences:

- X if X then false else true
Xand Y if XthenY else false
XorY if X then true else Y

6.4.3. Exanples

P or Q

(XCY) and (Y C2)
YOUNGESTOFFSPRING (JACK) - = nul |
FATHER (JILL) is PERSON

6.5. Bit Expressions .

6.5.1. Syntax

<simple bit expression> ::= <bit term> | <simple bit expressi on>
or_ <bit term>

<bit termp ::= <bit factor> | <bit term> and <vit factor>
<pit factor> ::= Cbit secondary> | - <bit secondary>
Chit secondary> ::= <bit primary> | <bit secondary> shl

<integer primary> | <vit secondary> shr
<integer primary>
<bit primary> ::= <bit sequence> | Cbit variable> | <bit
function designator> | (<bit expression>)

30

6.5.2. Semantics
A bit expression is a rule for conputing a bit sequence.
The operators and, or, and - produce a result of type bits, every

bit being dependent on the corresponding bits in the operand(s) as

foll ows:
X Y - X XwY XorY
0 0 1 0 0 -
0 1 1 -0 1
1 0 0 0 1
1 1 0 1 1

The operators shl and shr denote the shifting operation to the
left and to the right respectively by the nunber of bit positions in-
dicated by the absolute value of the integer primary. Vacated bit,

positions to the right or left respectively are assigned the bit val ue

0.

6.5.3. . Examples

Gand H or #38
Gand - (Hor § shr 8.

6.6. String Expressions

6.6.1. Synt ax
<simple String expression> ::= <string primary>
<string primry> ::= <string> | <string vari abl e> | <string

function designator> | (<string expression>)
<substring designator> ::= <simple string variabl e>
(<integer expression ¥ <integer number>)

31

6.6.2. Semantics

A string expression is a rule for conputing a string {seguence of

characters).

6.6.2.1. A substring designator denotes a sequence of characters of
the string designated by the string variable. The integer expression
preceding the 8 selects the starting character of the sequence. The
val ue of the expression indicates the position in the string variable.
"The value nmust be greater than or equal to 0 and less than the declared
| ength of the string variable. The first character of the string has
position 0. The integer nunber following the § indicates the length

of the selected sequence and is the length of the string expression,
The sum of the integer expression and the integer number nust be |ess

than or equal to the declared Iength of the string variable.

6.6.3. Exanple

E string (10) S
1 s (LU3)
S (I+Jw1l)

string (10) array T (l::m,2::n);
T (4%,6) (5% 5)

6.7. Reference Expressions

6.7.1. Syntax

1)

<simple reference expression> ::= <null reference', | <reference
variable> | <reference function
desi gnat or > | <record desi gnator> |

(<reference expression>)

32

x

r-

<record designator> ::= <record class identifier> | <record
class identifier> (<expression |ist>]
<expression list> ::= <J expressiom> | <expression |ist>,
<J exprzssior>

6.7.2. Semantics

A reference expression is a rule for conputing a reference to a
record. Al sinple reference expressions in a reference expression
nust be of the sane record class.

The value of a record designator is the reference to a newy
created record belonging to the designated record class. |f the
record designator contains an expression list, then the values of the
expressions are assigned to the fields of the new record. The entries
in the expression list are taken in the sane order as the fields in
the record class declaration, and the sinple types of the fields nust
be assignment conpatible with the sinple types of the expressions

(cf. 7.2.2.).

6.7.3. Exanple

PERSON ("CARQL", 0, f_aI_si, JACK, JILL, null, YOUNGESTOFFSPRI NG
(JacK))

6.8. Precedence of Qperators

The syntax of 6.3.1., 6.4.1., and 6.5.1. inplies the follow ng
hi erarchy of operator precedences:

long , short, abs

shl, shr, =x»
/M

*, /, div, rem and

34

et ar, |

Exanpl e
A=Band C is equivalent to A= (Band Q

7. STATEMENTS

A statement denotes a unit of action. By the execution of a
statenment is meant the performance of this unit of action,which may
consist of smaller units of action such as the evaluation of expres-

sions or the execution of other statenents.

Synt ax:
<program> ::= <block> .
<statement> ::= <sinple statement> | <iterative statement> |
- <if statement> | <case statenent>
<sinple statement> .= <bloc& | <7 assignment statenment> |
<empty> | <procedure statenent> |
<goto statement>
- 7.1. Blocks

7.1.1. Syntax

<block> .= <block body> <statement> end
<bl ock- body? ::= <bl ock head> | <bl ock body> <statement>;
<bl ock body? <l abel definitior>
<bl ock head> ::= begin | <block head> <declaration> ;
= <l abel definition> ::= <identifier> :

7.1.2. Semantics
Every bl ock introduces a new | evel of nonenclature. This is

- realized by execution of the block in the follow ng steps:

b

Step 1. If an identifier, say A defined in the block head or in
a label definition of the block body is already defined at the

pl ace fromwhich the block is entered, then every occurrence of
that identifier, A, within the bl ock except for occurrence in
array bound expressions is systematically replaced by anot her
identifier, say APRIME, which is defined neither within the

bl ock nor at the place from which the block is entered.

Step 2. If the declarations of the block contain array bound

expressions, then these expressions are eval uated,

Step 3. Execution of the statements contained in the bl ock body
begins with the execution of the first statement follow ng the

bl ock head.

After execution of the last statenent of the block body (unless
it is a goto statement) a block exit occurs, and the statement foll ow

ing the entire block is executed.

7.1.3. Exanple

begin real U

u:=X; X:=Y;, Y :=2;2:=1U
end

7.2. Assignment Statenents

7.2.1. Syntax
In the follow ng rules the synbols T, and T, nust be replaced by
words as indicated in Section 1, subject to the restriction that the

type T, is assignment conpatible with the type T, as defined in 7.2.2,

35

L

r r— [r—— [

r—

r—-

T, assignment statement> ::= <J, left part> <7, expressi on> |
o left par-D <Tl assi gnnent
statement>

<J left part> ::= <T variable> :=

7.2.2. Semantics

The execution of a sinple assignment statenent

T, assi gnnent statement> ::= <IO left part> <Kl expression>
causes the assignment of the value of the expression to the variable.
If a shorter string is to be assigned to a longer one, the shorter
string is first extended to the right with blanks until the lengths are
equal. In a multiple assignment statenent

(<1’0 assignment statenment> = <ro left part> <:Tl assi gnnent

statement>)

the assignnents are perfornmed fromright to left. The sinple type of
each left part variable nust be assignment conpatible with the sinple
type of the expression or assignnment variable inmmediately to the right.

A sinple type T, is said to be assignment conpatible with a sinple
type Ty if either

(1) the two types are identical (except that if To and Tl are

string, the length of the T, variable nust be greater than
or equal to the length of the Il expression or assignnent), or
(2) T is real or long real, and T, is integer, real or long

oeal r

(3) 7o is conplex or long conplex, and T Is integer, real

long real, conplex or long conplex.

In the case of a reference, the reference to be assigned nust refer
to a record of the class specified by the record class identifier asso-
ciated with the reference variable in its declaration

36

—

73

2.3. Exanples

7.
Z := AGE(JACK) :=28
X:=Y+abs z
C
=

I+X+¢C
X—=Y

I

Procedure Statenents

7.3.1. Syntax
<procedure statement> ::= <procedure identifier> | <procedure
identifier> (<actual paraneter |ist>)
<actual parameter 1list> ::= <actual paraneter>] <actual para-
meter list> , <actual paraneter>
<actual paraneter> ::= <J expressior> l <st at enent >] <J subarray
desi gnat or> | <procedure identifier> |
<J function identifier9
<J subarray designator:> ::= <J array identifier>|<7T array
identifier> (<supbarray designator
list>)
<subarray designator 1list> ::= <subscript> | * | Csubarray

desi gnat or list>,<subscript> |
<subarray designator list>,*

7.3.2. Semantics

The execution of a procedure statement is equivaient to a process

performed in the follow ng steps:

Step 1. A copy is made of the body of the proper procedure whose
procedure identifier is given by the procedure statement, and of

the actual parameters of the latter.

Step 2. If the procedure body is a block, then a systematic

change of identifiers in its copy is performed as specified by

37

1
—

r-—

r

step 1 of 7.1.2.

Step 3. The copies of the actual parameters are treated in an
undefined order as follows: If the copy is an expression differ-
ent froma variable, then it is enclosed by a pair of parentheses,
or if it is a statement it is enclosed by the synbols begin and

end

Step 4. In the copy of the procedure body every occurrence of an
identifier identifying a formal paraneter is replaced by the copy
of the corresponding actual paraneter (cf. 7.3.2.1.). En order
for the process to be defined, these replacenents nust lead to

correct ALGOL W expressions and statenents.

Step 5. The copy of the procedure body, nodified as indicated in

steps 2-4, is executed.

7.3.2.1. Actual formal correspondence. The correspondence between
the actual paraneters and the formai paraneters i S established as
follows: The actual paraneter list of the procedure statenent (or
of the function designator) nust have the same number of entries as
the formal parameter list of the procedure declaration heading. The
correspondence is obtained by taking the entries of these two iists

in the sanme order.

7.3.2.2. Formal specifications. If a' formal paraneter is specified
by value, then the formal type must be assignnent conpatible with the
type of the actual parameter. If it is specified as result, then the

type of the actual parameter must be assignment conpatible with the

38

—

formal type. In all other cases, the types nust be identical. |f an
actual paraneter is a statement, then the specification of its corre-

sponding formal parameter nust be procedure.

7.3.2.3. Subarray designators. A conplete array may be passed to a
procedure by specifying the nane of the array if the nunmber of sub-
scripts of the actual paraneter equals the nunber of subscripts of

the corresponding formal parameter. |f the actual array paraneter has
more subscripts than the corresponding formal parameter, enough sub-
scripts nust be specified by integer -expressions so that the number of
¥'s appearing in the subarray designator equals the number of sub-
scripts of the corresponding formal parameter. The subscript positions
of the formal array designator are matched with the positions with *'s

in the subarray designator in the order they appear.

7.3.3. Exanples

| NCRENENT
CPY (A, B, M N
INNERPRODUCT (I, N, A(I,*), B(¥,J))

7.4. Goto Statenents

7.4.1. Syntax

<goto statement> ::= goto <label identifier> | go to <l abel
identifier>

7.4.2. Semantics

An identifier is called a |abel identifier if it stands as a

| abel .

39

A goto statement determ nes that execution of the text be contin-

ued after the label definition of the label identifier. The ident ift-

cation of that label definition is acconplished in the follow ng steps:

7.5,

Step 1. If some |abel definition within the nost recently acti-
vated but not yet termnated bl ock contains the |abel identifier,

then this is the designated |abel definition. O herw se,

Step 2. The execution of that block is considered ag termnated

and Step 1 is taken as specified above.

[f Statements

7-5.1. Syntax

<if statement)- ::= <if clause> <statement> | <if clause>
<simple statement> €l se <statement>
if <l ogi cal expressiom> then

il

<if clause>

7.5.2. Semantics

The execution of if statenents causes certain statements to be .

executed or skipped depending on the values of specified |ogical ex«

pressions. An if statenent. of the form

<if clause> <statenent)

Is executed in the follow ng steps:

-Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of Step 1is true, then the statenent
following the if clause is executed. Otherw se step 2 causes

no action to be taken at all.

40

An if statement of the form

<if clause> <sinple statenent> else <statenent>

is executed in the followng steps:

Step 1. The logical expression in the if clause is eval uated.

Step 2. If the result of step 1 is true, then the simple state-
ment following the if clause is executed. Qherwise the state-

ment following else is executed.

7.5.3. Exanples

if X =Ythen goto L
IfX< Y thenU :=X else if Y<ZthenU:=YelseV:i=Z

7.6. Case Statenents

7.6.1. Syntax

<case statenent> ::= <case clause> begin <statement |ist> end
<statement |ist> ::= <statement> | <statenent |ist> ; <statement>
<case clause> ::= case <integer expression> of

7.6.2. Semantics

The execution of a case statement proceeds in the follow ng

st eps:
Step 1. The expression of the case clause is evaluated.

Step 2. The statement whose ordinal nunber in the statenment |ist
is equal to the value obtained in Step 1 is executed. In order
that the case statement be defined, the current value of the ex-

pression in the case clause nmust be the ordinal nunmber of sone

b1

77

statenent of the statement |ist.

7.6.%, Examples

case 1 of

begin X:= X+,
Y =Y + Z;
Z :=Z+ X

end

case J of

begin H(1) := -H(I);
begin H(I-1) := H(I-1) + H(I); | := I-1 end;
begin H(I1-1) :=K(I-1) x H(1); | :=1-1 end;
begin H(H{I-1)) H(I); I := I-2end

1

end

Iterative Statements

7.7.1! Syntax

<iterative statement> ::: <for clause> <st. tement> | <while

clause> <statement>
<for clause> ::= for <identifier> := <initial value

step <increnment> until <limit> do | for
<identifier>:=<initial value until <limit>

do | for <identifier> := <for 1ist> do

<for list> ::= <integer expression> | <for list>, <integer
expressi on>

<initial value> ::= <jinteger expressior>

<increment>. ::= <integer expressiocr>

<limt> ::= <integer expressiom>
<whil e clause> ::= while <l ogical expression> do

7.7-2. Semantics

The iterative statenent serves to express that a statenment be

42

executed repeatedly depending on certain conditions specified by a
for clause or a while clause. The statement following the for clause
or the while clause always acts as a block, whether it has the form of
a block or not. The value of the control identifier (the identifier
following for) cannot be changed by assignment within the controlled
statenent.

(a) An iterative statenent of the form

for <identifier> :=Elstep E2 until E3 do <statement>

is exactly equivalent to the block

begin <statement-O>; <statenent-P ... ; <statenent-L>;
.} <statenent-N> e_nd

in the Ith statement every occurrence of the control identifier
is replaced by the value of the expression (El + | X E2).
The index N of the last statement is determ ned by
N < (E3-E1) / E2 < N+1. If N< 0, then it is understood that
the sequence is enpty. The expressions El, E2, and E3 are
eval uated exactly once, namely before execution of <statenent-O).

Therefore they can not depend on the control identifier.

(b) An iterative statenent of the form
for <identifier> := El until E3 do <statenent>
is exactly equivalent to the iterative statenent

for <identifier> := El step 1 _until E3_do <statement>

(c) An iterative statenent of the form
for <identifier>:=E, E2, ..., EN_do <statement>

is exactly equivalent to the block

b3

- begin <statenent-D; <statenent-a ... <statement-I> ; ...
<statement-N> end

i when in the I*® statement every occurrence of the control identifier

is replaced by the value of the expression EI.

(d) An iterative statenent of the form
while E do «statement>

Is exactly equivalent to

begi n
L: if E then
= begi n <statement> ; goto L end
end

70 7.3 Examples

for V.:=1step 1 until NI do S:=S+ A(UYV)

while (9> 0) and (CITi(J) = = S)do J := J-1

for I 1= x, x+1, x + 3 X+ 7 do P(I)

7.8. Standard Procedures

The standard procedures differ from explicitly declared procedures
in that they nmay have one or nore paraneters of mixed simple type.

) In the following descriptions T is to be replaced by any one of

I nt eger bi t

- real string
long rea

- compl ex
| ong conpl ex

Ly

7.8.1. Read Statenents
Inplicit declaration heading:

procedure read (7 result X Tresult X, . , Tresult Xn);

procedure readon (7 result X,, T result X, . , T result x);
(where n > 1)

Both read and readon designate free field read statenents. The
quantities on the data cards nust be separated by one or nore blank col -
ums . Al 80 card colums can be used and quantities extending to col-
um 80 on one card can be continued beginning in colum 1 of the next
card. In addition to the numbers of L.1., nunbers of the follow ng
syntactic forms are acceptable quantities on the data cards:

1) <sigm> <J nunber>

where T is one of integer, real, long real, conplex, |ong conplex.
2) <sigr> <TO nunmber > <sigr> <frl nunber >

where TO is one of integer, real, long real, and Tl is one of

conpl ex, |ong conpl ex.

The quantities on the data cards are matched with the variables of
the variable list in order of appearance. The sinple type of each quan-
tity read nmust be assignment conpatible with the sinple type of the
variable designated. The read statement begins scanning for the data
on the next card. The readon statement begins scanning for the data
where the last read or readon statement finished.

7.8.1.2. Exanples

read (X,A{I))
for I :=1 until N do readon (A(l))

L5

7.8.2. Wite Statenents
Inplicit declaration heading:
procedure wite (7 value Xx;, T value X,, ..., T value Xn);
(where n > 1);

The values of the variables are output in the order they appear

in the variable list in a free field form described below. The first

field of each WRITE statenent begins on a new line.

cicnt space renaining on the 132 character print line for a new field,
that line is printed and the newfield starts at the beginning of a new

print line.

integer: rightyjustified in field of 14 characters followed by 2

blanks. Field size can be changed by assignnent to Intfieldsize.

real: same as integer except the field size cannot be changed.

long real: right justified in field of 22 characters followed
by 2 blanks.

conplex: two adjacent real fields always on the sane |ine.

long conplex: two long »-.1 fields adjacent always on the sane

line.

logical: TRUE or FALSE right justified in a field of 6 characters
foll owed by 2 bl anks.

string: placed in a field large enough to contain the string
and may extend to a newline if the string is larger
t han 132 characters.

hits: sane as real.

reference: sane as real.

STANDARD FUNCTI ONS AND PREDECLARED | DENTI FI ERS

Standard Transfer Functions

Inplicit declaration headings:

L6

If theres is insuffi-

8.2.

i nteger procedure round (real value X);

I nteger procedure truncate (real value X);

I nteger procedure entier (real value X);

real procedure realpart (conplex value X);

|l ong real procedure.|ongreal part (long conplex value X);
real procedure imagpart (conplex value X);

long real procedure |ongimagpart (long conplex value X);
conpl ex procedure imag (real value X);

conment conpl ex nunber Xl ;
| ong conpl ex procedure longimag (long real value X);
| ogi cal procedure odd (integer-value X);
bits procedure bitstring (integer value X);
conment binary representation of nunber X
i nteger procedure nunber (bits value X);
conmment integer with binary representation X
i nteger procedure decode (string (1) value S);
coment nuneric code of the character S
string (1) procedure code (integer value X);
comrent character whcse numeric code is X REM256;

Standard Functions of &aaalysis

real procedure sin (real value X);
long real procedure longsin (long real value X);

real procedure cos (real value X);
|.ong real procedure' longcos (long real value X);
real procedure arctan (real value X);
coment -x/2 < arctan (X) <=/2;
long real procedure longarctan (long real value X);
coment -x/2 < longarctan (X) < n/2;

real procedure 1n (real value X);

conment | ogarithm base e;
long real procedure longln (long real value X);
conment | ogarithm base e;

b7

8.3.

real procedure log (real value X);
conment | ogarithm base 10;

long real procedure longlog (long real value X);
coment | ogarithm base 10;

real procedure exp (teal value X);

| ong real procedure |ongexp (lLong real value X); -

real procedure sqrt (real value X);

| ong real procedure longsqrt (long creal value X);

conpl ex procedure conplexsqrt (conmplex value X);
conment principal square root;

| ong conpl ex procedure |ongconpl exsqrt (long conplex value X);
conment principal square root;

Overflow and Underfl ow

8.3.1. Predeclared Variables

uogidad r f | ow;
comment initialized to false. Set to true at occurrence
of a floating-poinz,-underflow interrupt;

| ogi cal _overflow,
coment initialized to false. Set to true at occurrence

of a floating-point or fixed-point overflow or divide-by?
zero interrupt;
8.%.2. Standard Message Function

i nteger procedure nsglevel (integer value X);

conmment The value of a systeminteger variable MSG controls
t he nunmber of underflow overfl ow nmessages printed during
program execution. MG is initialized to zero.

MBG = 0

No messages are printed.

48

MEG > 0
Underfl ow and overflow messages are printed.
After each nessage is printed, MSGis decreased by 1.

MEG < 0
Overflow messages are printed. After each nmessage
Is printed, MSG is increased by 1.

Each nessage gives the type of interrupt and a source card nunber

near which the interrupt occurred.

Exanpl es

OVERFLOWN NEAR CARD 0023
UNDERFLON NEAR CARD 0071
DIV BY ZERO NEAR CARD 0372

The predeclared integer procedure msglevel is used to interro-
gate and to set the value of MSG The old value of MG is the val ue
of the procedure nsglevel, and the new value given to MSG is the

val ue of the argument of nsglevel.

8.4. CQutput Field Sizes

integer intfieldsize;
comment indicates nunber of digits including mnus sign if

any. Initialized to 1l4; can be changed by assigmnment state-

ment ;

8.5. Fumcti on

integer procedure time (integer value X);

coment if X =1, tineis returned in 60ths of a second,
If X =2, timeis printed in mnutes, seconds and 60" of
a second and returned in 60ths of a second.

L9

ALGOL W

ERROR MESSAGES

by

Henry R.Bauer
Sheldon Becker
Susan !.. Graham

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY
JANUARY 1968

ALGOL W ERROR MESSAGES

PASS ONE MESSAGES

Al Pass One nessages appear on the first page followi ng the pro-

gram listing. The message format is

CARD NO. (nunber) --

(message)

The (nunber) corresponds to the card nunber on which the error

was found. The (message) is one of-those |isted bel ow

| NCORRECT SPECI FTN

| NCORRECT CONSTANT
M SSING END
M SSI NG BEG N

M SSI NG)
| LLEGAL CHARACTER

M SSI NG END .

STRING LENGTH ERRCR

BITS LENGTH ERROR

M SSI NG (
OOWPI LER TABLE OVERFLOW

syntactic entity of a declaration is

incorrect, e.g. variable string l|ength.

syntax error in nunber or bitstring
an END needed to cl ose bl ock.

an attenpt to close outer block be-
fore end of code.

) is needed.

a character, not in a string, is
unrecogni zabl e.

program nust conclude with the se-
quence END .

string is of O length or length
greater than 256.

bits constant denotes no bits or
more than 32 bits.

(1's needed

termnating error — a conpile time
tabl e has exceeded its bounds.

TOO MANY ERRORS t he maxi num nwiber of errors for Pass
One records has been reached. Com
pilation continues but messages for
succeeding errors detected by Pass
One are suppressed.

| D LENGTH > 256 nore than 256 characters in' identifier.
See al so discussion of PROGRAM CHECK in |V.

[l1. PASS TWD MESSAGES

The format of Pass Two error messages is

(message), CARD NUMBER IS (number). CURRENT SYMBOL IS (incom ng
synbol)

I f a $STACK card is included anywhere in the source deck, the

SYNTAX ERRCR nessage is foll owed by

STACK CONTAINS:
(beginning of file)
<synbol - | >

<synbol -m (top of stack)

- The synbol nanes may differ-somewhat from the metasymbols of
the syntax.
1f any Pass One or Pass Two errors occur, conpilation is term-
nated at the end of Pass Two.
| NCORRECT SIMPLE TYPE <nunber > <sinple type> of entity is improper

as used. Nunber indicates explana-
tion on list of sinple type errors.

ARRAY USED | NCORRECTLY a variable nust be used here.

IDENTIFIER MUST BE RECORD reference declaration is incorrect,
CLASS ID
M SMATCHED PARAMETER formal paraneter does not correspond

to actual paraneter.

MULTI PLY- DEFI NED SYMBOL <iden- _
tifier> symbol defined tore than , once

in a block.
UNDEFI NED SYMBOL' <i dentifier9 synbol is not declared or defined,
| NCORRECT NUMBER OF ACTUAL
PARAMETERS the nunber of actual paraneters to
a procedure does, not equal the nunber
of formal paraneters declared for
the procedure.

| NCORRECT DI MENSI ON the array has appeared previously
with a different/nunber of dinensions..

DATA AREA EXCEEDED too many declarations in the block.

INCCRRECT NUMBER OF FI ELDS the nunber ot fields specified in a

record designator doe's not equal the
nunber of fields the declaration of
the record indicates.

INOMPATIBLE STRI NG LENGTH | ength of assigned string is greater
t han length of string assigned to.
II7OMPATIBLE REFERENCES record cless bindings are inconsistent.
BLOCKS NESTED TOO DEEP bl ocks are nested-more than 8 levels.
- REFERENCE MUST REFER TO RECORD -
CLASS reference must be bound to a record -
cl ass.

EXPRESSI ON MISSING | N PROCEDURE
BODY body of typed procedure must end with.

an expression.

b

RESULT PARAMETER MUST BE <T VAR> the actual parameter corresponding
to a result formal parameter nust
be a <T VARIABLE>.

PROCEDURE HEW LACKS SI MPLE TYPE proper procedure ends with an ex-

pression.

<SYMBOL-1> UNRELATED TO <SYMBCOL-a the synbol at the top of the stack
(<SYMBOL-1>) should not be followed
by the incomng symbol (<SYMBOL-§&).

SYNTAX' ERRCR construction violates the rules of
the granmar. The input string is
ski pped until the next END, ";",
BEG N, or the end of the program
More than one error nessage may be
generated for a single syntax error.

r

— r—

Sinple Type Errors

25. Upper and |ower bounds must be integer.

29. Upper and |ower bounds nust be integer.

. 32. Sinple type of procedure and sinple type of expression in pro-

L , cedure body do not agree.

71. Substring index nust be integer.

73. Variable before '(* nust be string, procedure identifier, or array
identifier.

74h. Substring length must be integer.

76. Field index nust be reference or record class identifier.

"

77. Array subscript must be integer.

81. Array subscript nust be integer.

84. Actual parameters and formal paranmeters do not agree.
88. Actual paraneters and formal paraneters do not agree.
9%. Expressions in if expression do not agree.

Ok. Expressions in case expression do not agreé.

95. Expression in if clause nust be |ogical.

98.

99.
101.
102.

103.
106.
107.
108.
' 109.
110.
112.
117.

118.

119.
120.
121.
123.
125.

126,

130.
134,
13
130
148.
181.
182.
188.
190.
191.

k1‘95.

195.

197.

Expressions in case expression do not agree,

Expression in case clause nust be integer.

Argunents of = or 1= do not agree.

Argunments of relational operators must be hteger rea or
|l ong real.

Argument before is nust be reference

Argunment of unary + nust be arithnetic.

Argument of unary - must be arithnetic.
Arguments of + nust be arithnetic.

Arguments of - nust be arithmetic.

Argunents of or nust be both Logical or both hits

Record field nust be assignment conpatible with declaration.
Arguments of * nust be arithmetic.

Argunents of / must be arithmetic.

Argunents of div nust be integer.

Arguments of rem nust e jnteger.

Argunents of and nmust be both Logical or both hits.

Argunment of -1 nust be logical or hits.

Exponent or shift quantit nust be integer; expression to be
shifted nust be bi .

Shift quantity nust be nteger; expression to be shifted must be
bits.

Actual parameter of standard function has incorrect sinple type.

Argument of long nust be iLnteger, real or conplex

Argunent of short nust be Lang real or long eenphex

irgument of abs nust be arithnetic.

Record field nust be assignment conpatible with declaration.

Expression cannot be assigned to variable.
Result of assignnent cannot be assigued to varfsble.
Linit expression in_for clause must be i-hteger

.Expression in for |ist must be integer.

Assignnent to for variable must be iLnteger.

“Expression in for |ist nust be Lnteger

Step elenment nust be integer.

“Expression |n while clause nust be |ogical-

>

r

—

[1l. PASS THREE ERROR MESSAGES

The form of Pass Three error nessages is

¥k (nessage)
*¥0exx NEAR CARD (nunber)

The nunber indicates the nunber of thé card near which the error

occurred. The message may be
PROGRAM SEGMENT OVERFLOW the anount of code-generated for a
procedure exceeds V4096 byt es.

COMPILER STACK OVERFLOW constructs nested t00 deeply,
CONSTANT PoINTER TABLE TOO LARCE too many literals appear in a pro-

cedure.

BLOCKS NESTED TOO DEEP parameters in procedure call are nested,

too deeply; procedure calls in 'block
nested too deeply.

DATA SEGVENT OVERFLOW too many veriables declared in the
bl ock.

IV. RUN TIME ERROR MESSAGES

The form of run error messages i S

RUN ERROR NEAR CARD (number) - (message)

SUBSTRING | NDEXI NG sub&ring selected not within naned
string.
CASE SELECTI ON | NDEXI NG i ndex of case Btatement Or case ex-

pression is less than 1 or greater

t han number of cases.

ARRAY SUBSCRIPI'ING array subscript not within de&red
bounds.

6

LONER BOUND > UPPER BOUND

ARRAY TOO LARGE

ASSI GNMENT TO NAME PARAMETER

DATA AREA OVERFLOW

| ower bound is greater than upper
bound in array declaration.

The (n-1) dimensional array obtained
by deleting the right-nost bound-

pair of the array being declared has
too nmany elenents The naxi num nunber
of elements allowed in this (n-1)
di mensional array is given bel ow

according to the declared type of

t he array.
maxi mum # of
elements in
first (n-1)
type di nensi ons
| ogical, string 32767
integer, real 8191
bits, reference 8191
long real, conplex 4095
| ong conpl ex 2047

assignment to a fornmal name paraneter
whose corvesponding actual paraneter
is an expression, a literal, contro
identifier,? or procedure name.

storage available for program execu-
tion has been exceeded.

ACITAL-FORMAL PARAMETER M SMATCH the number of actual parameters in

IN FORVAL PROCEDURE CALL

RECORD STORAGE AREA OVERFLOW

a formal procedure call is different
from the nunber of formal paraneters
in the called procedure, or the
paraneters are not assignment

compatible.

no nore storage exists for records.

—

LENGTH OF STRING | NPUT string read is not assignnent com
patible with corresponding declared

string.
LOG CAL I NPUT quantity corresponding to |ogical
quantity is not true or false.
NUMERI CAL | NPUT numerical input not assignment com
patible with specified quantity.
REFERENCE | NPUT reference quantities cannot be read.
READER ECF a system control card has been

encountered during a read request.

REFERENCE the null reference has been used to
address a record, or a reference
bound to two or nore record classes
was used to address a record class
to which it was not currently pointing.

/O ERRCOR see consul t ant

LINE ESTI MATE EXCEEDED line estimate on %ALGOL card is
exceeded.

TIME: ESTIMATE EXCEEDED time estimate on $AIGOL card is
exceeded.

Counts of certain exceptional conditions detected during program

conpi lation orexecution are maintained. ¢ any of these are non-zero

they are listed after the post-conpilation or post-execution elapsed

time nessage in the followng format:

nnnn PROGRAM CHECK NO xx

The nunber of times the condition was detected (module 10000) is
given by nnnn; the nature of the condition is indicated by xx

according to the follow ng table:

— r—

08
09
12
15
15

integer overflow

i nteger division by zero
real exponent overflow
real exponent underflow
real division by zero

This counting is not affected by the value of MG

V. OTHER

PRG PSW (16 hexidecimal digits) conpiler error,

see consul tant

r— e -

L acasaan |

ALGOL W NOTES

FOR INTRODUCTORY

COMPUTER SCIENCE COURSES

by

Henry R. Bauer
Sheldon Becker
Susan L, Graham

-COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY
JANUARY 1968

—

Y

Introduction

The textbook Introduction to AIOL by Baumans, Feliciano, Bauer,

and Samelson describes the internationally recognized |anguage AIGOL 60 -
for algorithm communication. A GO Wcan be viewed as an extension of*

ALGOL.

Part | of these notes describes the differences between similar
constructs of the two |anguages.

For clarity, Part | is nunbered according to the sections of the

textbook. In general only differences are nentioned; itens which ae

the same in both |anguages are usually not discussed.
Part 1l presents some of the details concerning the new features

of AIGOL W. A conplete syntactic and semantic description of these

constructs as well as of all others in the |anguage is available in

"AIGOL W Language Descri ption”.

r

— r—

CONTENTS
PART | S e, 2
PART Tl e N . “”51
1. Procedures ., 31
1.1 Call by Result . ., Cerreiinan. vesl 31
1.2 Gall by Value Result ———— « « 5
2 Procedure Galls 31
2.1 Sub-arrays as Actual Paranmeters 32 |
3. String Variables LI L 33
4. Records and References 36
4.1 Record O ass Declarations . 36
4.2 Reference Declarations 37
4.3 Reference Expressions . . 38
b4 Record Designators 39
L.s Field Designators Lo

— o

1

PART | Differencea between AILGOL60 and AIgor, W

Basic Synbols of the Language

1.1. The basic synbols

1.1.1. Letters

Only tipper case letters are used.

1.1.3. Qther synbols

The following are the same in MGOILG*Oi’,and‘ ALGOL W

+../.,

()=
=<>
The following are different in the two |anguages. The

correspondence Petween the synbols is shown in the following

tabl e:
AIGOL 60 AIGOL W
10 '
X - *
- t L.
[(
])
¢ n
v DIV
=2 No equivalent
v R

——

—

AIGOL 50 AIGOL W

A AND
- one blank space
v .
< <=
> > =

sor i (cf. section 6.1 and 4.2,1)

no equival ent | #

Al characters indicated for AIGOL W are on the |BM 029

key- punch,

The significance of spaces in ALGOLW will be discussed in

subsequent sections.

1.2, Nunbers

A nunber is represented in its nmost general formwth' a scale
factor to the base 10 as in c nventional scienti®ic notation.
EXAMPLE 3,164981'-4 Means 3,164981%10"*

This is often called the floating point form Certain abbreviations

om‘tting unessential parts are perm ssible.

EXAMPLES 7 317.092 126' 04
551 . 5384 Ok, 7192
'50 0.710 9.123 '+1
-7 0 2'-6
'-3 009.123 '+01 2.0'-06

To represent a long floating point (cf. Section 2.3.1) nunber an

EXAMPLES 77L 317.092L 126'04L

In ALGOL W conpl ex nunbers (short and long forns) nay be used.

The imaginary part of a conplex nunber is witten as an unsigned rea

nunber followed by an I.

EXAVPLES 4T 4.8T L'-sT

Long imaginary nunbers are followed by an L.

EXAMPLE 4, 811,

Nunbers may be witten in a variety of equivalent forns.
EXAMPLE 12’0k = ,12'6 = 1.,2'05 = 120000.0

No spaces may appear within an unsigned nunber. The magnitude of
an integer or the integer part before the decimal point in a floating
poi nt number nust be less than or equal to 2147483647, The nmgnitude
of a non-zero floating point r-unber nust be between approximately

5.4 x 10779 and 7x107° (1/16x16™%% and (1-1676)x16%3).

1.3. ldentifiers

A -letter followed by a sequence of letters and/or digits constitutes
an identifier, Identifiers may be as short, as one letter or as |ong

as 256 letters and digits.

ldentifiers may be chosen freely and have no inherent neaning
However, AIGOL W recognizes a set of reserved words which nust not be

used as identifiers.

— Y

[aaeniastnd

RESERVED WORDS

ABS GOm0 REM
AND @ TO RESULT
ARRAY | F SHL
BEG N INTEGER SHORT
BI TS 1S SHR
CASE. LOG CAL STEP
COVVENT LONG STRING
COVPLEX NULL THEN
DV OF TRUE
Do OR UNTI L
EISE PROCEDURE VALUE
END REAL WHILE
FALSE RECORD

FOR REFEREN"E

The reserved word BOOLEAN can be used in place of LOG CAL. Spaces
wre Used to separate reserved words and identifiers fromeach other and

f.om nunbers.
Certain identifiers are predefined for use by the programer but

are not reserved words. Thejr neaning will be discussed later. Anong

these are three input and output identifiera: READ, READON, W\RI TE,

(See Sections 2.2.2, and 2.5.)

1.4k Nonarithnetic synbols

The synbol s which are printed in bold type in the text are usually

underlined in typewritten COPy. They are contained in the list of

reserved words (cf. Section 1.3) for ALGOL W. They are not distinguished

in any other way but they nust not be used for any purpose other than

that for which they are specifically intended.

exanpl e, nust not be used as an identifier.

2, Arithretic Expressions

2.1. Nunerical Expressions

The synbol END, for

The basic arithnetic operators of AIGOL Ware

+ - % [/ % DIV REM
EXAMPLES
3.1459. L 7 DIV 3
(3.47'-4 + 9.01'+1) / 4 17 REM 12
9*8*x7/(1L*2*3) -1.2

(9+2.7) /(-3

(((1.5*%3 -4) *3 + 0.19'1) * 3 - 2,6'3) *3

10+1.4/(1+09/(7-04/3)

The synbol * denotes nultiplication while ** denotes exponentiation.

For instance, 4.5 ** 3 means h.53. The exponent nust always be an

integer in ALGOL W An integer to any exponent gives a real result.

EXAMPLES
AIGOL Wform Conventional form
4.1 -3 % 2 4.1 - %°
(4.1 -3) =2 (4.1 - 3)°
3.2 ¥ 2 + 5.2 3.2% + 5.2
4 %% D 12

AIGOL Wform Conventional form

(-4) *x 2 (-4)2
L x5
L x5 /2 %3 ZeZ
2
5 % 2 % 3 52 . 3
Also notice

2¥XZHXY = (23) 4

In ALGOL Wthe followi ng two constructs are not allowed because

the exponent is a real nunber

3.2%%(2 +5,2) and = 2%x(3*x*y),

2.2.2, Assignment of nunerical values through input

If the value of an identifier is to be provided by input it is
assunmed that this value appears on a data card which is in the card

reader waiting to be read. The statement

READZN (V)

where V stands for variable identifier, reads the next number on the

current input card, If there are no nore nunbers on the current input

card, S-ubsequent cards are read until a nunber is found. This statenent

assigns the value of the number to the variable whose name is specified.
READQfN(Vl,Ve,: V)

s equivalent to

READZN (Vl); READ@N (V2)5"'5 READ@N (Vn)

The constants on the data cards are assigned in the sane order as -

S—

the variable nanes in the READUN statenment, One or &everal nunmbers

may appear On a Single card separated by one or nore blank spaces with
colum 80 of one card imediately followed by colum 1 of the succeeding

card,

The st atenent
READ (V)

is simlar to READGN (V) except that scanning for the nunber begins on

a new input card.
The st at enent
READ (Vl’VE’Va”“’Vn)
s equivalent to
READ (Vl); READGN (VE,VB,,,,,VH)
Nunbers are punched into data cards in the forms described in
Section 1.2, and may be prefixe:. by "-". Numbers corresponding to

variables of type integer must notcontain decimal fractions or

scal e parts.

EXAVPLES READGN (A2)
-In this case the data card must contain at least one nunber,

say 1.279'-7 if A2 is not an integer variable,
READ (B10,B11,B12,B15);
The data cards must contain four nunbers, say
3.1 7. 149 825'1 9 if Bl0, B1l, Bl12 are not
integer variables, B15 may be an integer variable or a real

variable. (ne could spread these constants over several cards

i f desired.

In general input read into the machine nust be assignment conpatible

with the corresponding variable (cf. Section 2.3.2).

2.3. Assignnment of nunerical values through expressions

Exponenti ation o’ (a**b)15 defined by repeated multiplication if

b is a positive integer and by 1/ alb| when b is negative. p nust have

type integer. If one desires the result of 2% where Ris real, use

EXP (R ¥ IN (A)).
2.3.1. Evaluation of expressions

The discussion in this paragraph of Baumann et. al. is correct.
However, in ALGOL Wthe type of a resulting expression is defined for

each type and each operator. The type conplex and the discussion of

the long forms is provided for conpl eteness and nay be ignored by

begi nning programmers (cf. ALGOL W Language Description, Section 6.3).

I A+B, A- B
B
Zf\\‘\\\\\ i nt eger real conpl ex
i nt eger i nt eger r eal conpl ex
real real real conpl ex
conpl ex conpl ex conpl ex conpl ex

The result 1as the quality "long" if both A and B have the quality

"long", or if one has the quality "long" and the other is integer.

e

A B integer real complex
“integer - integer long real long complex
real long real long real long complex
complex long complex long complex long co

affect the resultant
A or B hdving the quality "long" does not

type of the expression.

III: A /B
A ,B integer real - complex
integer real real complex
real real real complex
complex complex complex complex

" " i for +
i long'" are those given
The specifications for the quality g

and - .
IV: A %% p
A P integer
integer real
real real
complex complex

i if A does.
The result has the quality "long" if and only

10

V: ABS A neans the "absol ute val ue of A"

A . ABSA

i nt eger i nt eger
real real
conpl ex rea

2.3.2. Type of the variable to which a value is assigned,

The assignment V := Eis correct only if the type of Eis

assignnent_conpatible with V. That is, the type of V nust be |ower or

on the same level in the list below as the type of E

i nt eger
real, long rea
conpl ex, 1ong conpl ex
Several transfer functions are provided as standard functions
(cf. Section 2.4). For exanple, to change the type of expression E from

real to integer either ROUND(E), TRUNCATE(E) or ENTIER(E) may be used.,

2.3.k. Miltiple assignments

The assignnent of the value of an expression can be extended to

several variables. As in ALGOL 60, the formin ALGOL Wis

The nul tiple assignnent statenment is possible only if all the
variables occurring to the left of Vi:= are assignment conpatible with

the type of the variable or expression to the imediate right of the ..,

11

2.4 Standard Functions

Al the standard functions listed in this section are provided in

ALGOL W except sign and abs.

ABS is a unary operator in ALGOL W In
addition the following standard functions are provided

truncat e(E) if E:-0, then entier(E)

if E<O0, then -entier(-E)

round(E) if E>O0, then truncate (E + 0.5)
if E<O, then truncate (E - 0.5)
log(E) the logarithm of E to the base 10
(not defined for E < 0)
time(E) if E= 1, elapsed tine returned in 6oth‘sof a second
if E=2, elapsed tine returned in 6othvs of a second
and printed in mnutes, seconds, and 6othvs of a
second
2.5. output

The identifier

"print" shoul d be replaced by "write" . A print
line-consists of 132 characters.

- EXAMPLES WRI TE(E); WRITE(El,EE,..n,E)5

The format of the values of each type of variable is listed bel ow

integer right justified in field of 14 characters and
followed by two blanks, Field width can be
changed by assignment to INTFIBLDSIZE.

real

same as integer except that field width is

i nvari ant.

12

long real

conpl ex

long conpl ex

| ogi ca

string

bits

right justified in field of 22 characters
foll owed by 2 blanks.

two adjacent real fields.

two adjacent Long real fields.

TRUE or FALSE right justified, in a field of
6 characters followed by 2 blanks

field large enough to contain the string and
continuing onto the next line if the string
is longer than 132 characters.

sane as real.

In order to provide headings or labels for printed results, a

sequence of characters may be printed by replacing any expression in

the wite statenent by the sequence of characters surrounded by ".

If the " mark is desired in a string it nust be followed by a ".

EXAVPLES

WITE ("N = ", N)

This statement will cause the following line to be printed if

N is integer and has the value 3.

N =

)

WRI TE ("SHAKESPEARE WRJTE ""HAMLET""")

This statement will cause the following line to be printed.

SHAKESPEARE WR@TE " HAMLET"

In the statement

WRI TE (E 5E,5-+ B)

15

—

the type of each E, deternmines the field in which its value will be

placed. The field for B4l follows the field for E, on the current
print line. If there is not enough space remaining on the current
print line, the line is printed and the field for E 4 begi ns at the
beginning of a new print line. The first field of each wite statenment

begins on a new print line.

3. Construction of the program

3.1 Sinple Statenments

Note that the sinple assignnent statement takes the formV := E

and that the input-output statenents are
READ (V), READON(V), and WRI TE(E)

where V is a variable or a variable list and E is an expression or

expression |ist.

3.2 Conpound Statenents

In later descriptions in these notes "conpound statements" will be

synononous with "blocks without declarations".
3.4 Comrent s

The construction

comment text;

may appear anywhere in an ALGOL Wprogram However, in ALGOL Wthe

conment following an end is linited to one identifier which is not a

reserved word.

1k

3.5, Example.
To clarify the change necessary to forman ALGOL W program from

the program endlosed in the box, the exanple is shown as it would be

punched. Note that an AIGOL W program nust end with a . (period).

BEG N COWENT EVALUATION OF A POLYNOM AL;
REAL AO A, A2, A3, X, P
READ (AQ, A, A2, A3, X);
P:=((A3*X +A2) »x1+A) *X +AQ
WRI TE (P)

END.

Note that the indentation, although not required, allows the begin
and end to be matched easily. In conplicated prograns indentation wll

i nprove readability and therefore reduce the nunber of careless errors.

k. Loops

L.1. Repetition

The variable V of the for statements described is always of the
type integer and cannot be declared in ALGOL W its declaration is
inplicit (cf. Section 7), and its value cannot be changed by explicit
assignment within the controlled statement. Each expression E of the
for clause nust be of type integer.

The statement of the form

f r V = Hl,H29. oep}fngg.b‘,'

is correct for n =21 in ALGOL Wonly if “mall i nt eger

' expressions,

The form

for V= E step 1 until E.do S

may be abbreviated as

for V := E until Erdo S

4.2, Subscripted Variables

In ALgor, Wthe subscript expression nust be of type integer, Any

other type will result in an error detected during compilation.
4.,2.1, Array declarations

In the text, the : in array declarations nust be replaced by ::
for AIGOL W The word array nust always be preceded by its type,
ARRAY A[1:10,1:20]; is incorrect and should be witten
REAL ARRAY A (1::10, 1::20);
Only one set of subscript bounds may be given in an array declaration.

Hence, the exanples should be corrected for ALGOL Wto read

EXAMPLES

real _array A B, C(1::10);
real array D, EG(1::10, 1::20);

integer array N, M(1::h);

4.4.2. Exanple

I'n AIGOL Wthe exanple in the box would be witten as listed bel ow.

16

BEG N COWENT DERI VATI VE OF A POLYNOMIAL;

| NTEGER N REAL P, (;
REAL ARRAY A(1;:20);
READ (N, C);
FOR | .= 1 UNTIL N DO READON(A(I));
P:=0;
FOR I := N STEP -1 UNTIL 1 DO
P := PXC + IxA(1);

— WRITE (P)

z END,

L - 5. The Conditional Statenent

L Conditional statenents are very useful and are used in AIGop Was
di scussed in this chapter for AIGOL60. Note that the symbols <

- 2 2

and # nust be replaced by < =, > =, and ~ =, respectively.

L 6. Junps

’ 6.1. Labels

A1l labels in AIGOL W nust be identifiers which are not reserved

words. The final expression in a function procedure My be | abel ed,

6.2. The Junp Statemnent

go to may be witten as GO TO or GOTO i n Algor, W

6.2.1. Jumps out of | oops or conditional statenents
The value of the |oop variable is not accessible outside of the

loop in AIGOL W
17

6.2.2. Inadmssible Junps

It is not possible to junp fromoutside into a loop in ALGOL W
Likewise, it is not possible to jump.into a conditi onal statemnent.

In general, it is not possible to junmp into the mddle of any
statenent, viz. for statement, conditional statenent, while statenent,

conpound st atenent, bl ock,

6.4. Anot her Form of Lo St at enent

The statement described in the text does not exist in ALGOL W,
However, ALGOL W has another form of |oop statement which is

useful -- it is called the while statenent.
FORM while B do S;

Bis a condition |ike that described in Chapter 5. As long as B is
true, the statenent S will be repeated. It is possible that Sis

never executed. Mre precisely, this loop may be interpreted

L. if B then

begin S, goto L

end
The exanple in Section 6.3 can be rewitten as follows:

BEGIN COMMENT DETERMINATION CF THE CUBE ROOT;
REAL A, APPROXIMATIONVALUE, X, Y, D;
READ (A, APPROXIMATIONVALUE);

X := APPROXI MATI ONVALUE; D := ABS X;

18

WHLE D > .5'-9 * ABS X DO
BEG N
Y :=; x 1= (2% 4+ A/(Y*Y))/3;
D := ABS (X-V);
END,
END.

7.. Block Structure

For the purposes of block structure in ALGOL W conpound statements
nust be considered as blocks, nanmely blocks without declarations. A
conpound statenent with a label defined in it is a block. (Reread the
notes in this paper concerning Chapter 6.) In for statements the scope

of the variable V in the for clause is the statenent S follow ng the do.

7.4. Dynamic Array Declarations

The expressions specifying the subscript bounds in dynanmic array

declarations nust be of type integer.

8. Propositions and Conditions

The word "Boolean" in the text should be replaced throughout by
"l ogical".

8.1. Opgieal ati ons

Sone of the synbols for |ogical operations are different in

ALGOL W

19

Qperation ALGOL ALGOLW READ AS

negation - - not
conj unction A AND and
di sjunction \% CR or

equi val ence

n

- s equivalent to

ALGOL W does not have an equivalent form of the ALGOL inplication

synbol, 2. The effect of AB is gotten by (-A) OR B, The ALGOL W

expression A~ = B is equivalent to the ALGOL 60 expression-, (&B).
The follow ng hierarchical arrangement defines the rank of the

operator with respect to other cperators.

Level ‘ Qperations Synbol
I\ LONG, SHORT, ABS
2 SHL, SHR, *¥
3 -
L AND, ¥, /, Y.V, REM
> R+, -
6 <G <=y >y, =y, =, o o=, IS

In a particular construct, the operations are executed in a sequence
fr = the highest level (smallest number) to the |owest |evel (Iargest
nunber). Cperations of the same level are executed in order from|left
to right when |ogical operations are involved and in undefined order
in arithnetic expressions.

The discussion in this section is correct except concerning the
hierarchy of operators. In general, the extra parentheses are required
in ALGOL Wwhen using arithmetic expressions wth |ogical operators.

The exanples below are correct ALGOL W and correspond to exanples in

20

the text. Al parentheses are necessary.

EXAVPLES
(A>5) R (B> =1)
(A*B>=C+D)= (ABS (21 + z2) > M)

(0< = xjAND (X <= 1)

(X =3)0R (1< =X)AND (X < =2)

means (X = 3) R ((1 < =X AND (X < = 2))

O

Desi gnati onal Expressi ons

The designational expressions described in the text do not exist
in AIGOL W The chapter may be skipped.
However, AIGOL W provides a designational statenent and expression

which is equivalent to that described by the text.

9.1. The Case Statement

The form

CASE E OF
BEG N
S

1382;"’“

END
is called a case statement. The expression E nust be of type integer.
The value of the expression, E selects the S; statenent between the
BEG N END pair. Execution is termnated if the value of E is less
than 1 or greater than n. After the designated expression is executed,

execution continues With the statement follow ng the END.

21

—

CASE |

BEG N

OF

BEGIN J := |; QOT0 L1;

END,

:=I+1;

IFJ <1 THEN GOTO L1

END

If the value of the expression, |, is 3, for exanple, the statement,

IF J < I THEN GOTO LI

followi ng the END,

I's executed, If J > =1 then execution continues

9.2, The Case Expression

Anal ogous to the case statement, the case expression has the form

CASE E OF (g

l’Ee)o:- ° ,E "L}

The value of the case expression is the value of the expression selected

by the value of the expression E. If the value of E is e,thenthe

val ue of E, s the value of the case expression

expre.=ion 1S

integer

~eal

long- rea

complex
| ong conpl ex

The type of the case

if all E 'sareinteger

i f any E; is real and no Ei is conplex or long
conpl ex

i f any E, is long real and all'Ei's are |long real
or i nt eger

i f any E& i's conpl ex

i f any B, is long conplex and all E,'s are | ong

i
conplex, long real, or integer

22

EXAMPLE"

CASE 3 OF (4.8, 12, 17, 4.9) has the value 17 in floating

point representation since the type of the case expression is real.

10. Procedures
10.1.1. Gobal and formal paraneters

Label s may not be used as formal paranmeters. Switches do not exjst

Ii7? ALGOL W.
10.1.2.1. Argunents

Argunments serve to introduce conputational rules or values into
the procedure. A rule of conputation can be brought into the procedure

if the conmputation is defined by means of another procedure declaration,

or a statenent.

Formal sinple variables, formal arrays, and formal procedures can
be argunents.

Exanple 3 is correct in the text.

A formal array can be used as an argument in only one way, "call

by name". The discussion concerning "call by value" should be ignored.

10.1.2.3. Exits

Because | abels may not be used as actual paraneters to a procedure,
the text's discussion of exits is not correct for ALGOL W. However,
a statement (in particular a GOTO statenent) may be used as an actual
parameter corresponding to a formal procedure identifier. |n this way

side exits leading out of the procedure are provided,

23

10.1.3. Function procedures and proper procedures

From gi ven pieces of programs, procedures can be derived either
in the formof function procedures or in the formof proper procedures
The body of a function procedure is either an expression or a
bl ock with an expression before the final END in the procedure body.
The value of the expression is the value of the function procedure.
The way in which a procedure is set up and used is a fixed
characteristic of the procedure and is established directly in the
decl aration by means of the introducing symbols. The declaration of
functions is introduced by the synbols
| NTEGER PROCEDURE
REAL PROCEDURE
LOG CAL PROCEDURE

according to the type of the resuiting value, The type of the expression
giving the value of the procedvre nust be assignment conpatible with
the declared type of the function procedure.

The declaration of the proper procedure begins with the symbol

PROCEDURE
No resulting expression can be placed at the end of the procedure
body.
10.1.4, The procedure head

Al'l necessary assertions about the formal parameters and the use
of the procedure are contained in the head of the procedure declaration.

In AIGOL Wthe head consists of three parts:

i

(1) Introductory synbol
(2) Procedure nane

(3) List of formal parameters, and’théir spe¢ifications

(1) The introductory synbol determnes the later use of the procedure

(cf. Section 10.1.3.)

(2) The procedure name can be chosen alnmost arbitrarily. The only

(3)

restriction is the general limtation concerning some reserved

names (ct. Section 1.3).

The type, value specification, and identifier nanme of forma

paranmeters appear in the list of formal paraneter specifications,
and not separately as in ALGOL 60. The comma serves as the
general separation synbol between formal paraneter identifiers

of the same type and value specification. The senicol on serves
as the general separation symbol between specifications of fornal

paraneters of different types or value specifications,

The type of the formal parameter is specified by the synbols

REAL
LONG REAL

| NTEGER

COMPLEX

LONG COMPLEX

LOG CAL

REAL ARRAY

LONG REAL ARRAY
COVPLEXARRAY
LONG COMPLEX ARRAY
INTEGER ARRAY

LOG CAL ARRAY

25

REAL PROCEDURE

LONG REAL PROCEDURE
COVPLEX PROCEDURE
LONG COWPLEX PROCEDURE
| NTEGER PROCEDURE

LOG CAL PROCEDURE
PROCEDURE

The val ue specification is used only for parameters called by
value . It is specified by the synbol value, It may only follow the

types |NTEGER REAL, LONG REAL, LOGICAL, COVPLEX, LONG COMPLEX,

L EXAMPLES

PROCEDURE P (REAL X, Y; INTEGER VALUE |; PROCEDURE Q R);
L REAL PROCEDURE Z (LOG CAL L, M N; REAL PROCEDURE P);
Note that in the case of formal paraneters used as array identifiers,
information about the number of dinensions must be given. The |ast ,

identifier following each array specification nust be fol |l owed by "("

s foll owed by one asterisk for each dimension separated by conmas, followed
'by_ !I)!l‘
EXAMPLE

-PROCEDURE P (REAL ARRAY X, Y (*,*); REAL ARRAY Z (*)).

10.2, The Procedure Cal

The procedure call in ALGOL W i5 unchanged from ALGOL60. This
section should be read carefully,

Since labels are not allowed as paranmeters, it was earlier suggested
that junp statenents be used and that the corresponding formal paraneter

be a'proper procedure (cf. 10.1.4. Exanple 8). In general, any

26

statement may be used as an actual paraneter corresponding to a formal

proper procedure which is used wthout paraneters,

EXAMPLE
BEGIN
PROCEDURE VECTOROPERATIONS (INTEGER J; INTEGER VALUE N;
PROCEDURE P);
BEGNJ :=1;
WHILE J < = N DO
BEANP, J:=J+1
END
END;
REAL PRCD; | NTEGER I;
REAL ARRAY A, B, €(1::10);
(initialize A and B)
L1: VECTOROPERATIONS (I, 10, O(1) := A(1l) + B(1));
PROD := 0.0;
L2: VECTOROPERATI ONS (I, 10, PROD := PROD + A(1) * B(1));
END

The statenent Ll is a procedure call which causes a vector addition
of Aand B to be placed in C The statement L2 causes the element-by-

el enent vector product of A and B to be cal culated and placed in PROD.

e7

10.3. Exemple
REAL PROCEDURE ROMBERGINT (REAL PROCEDURE FCT;;

REALVALUEA, B; INTEGER VALUE ORD);

BEG N REAL T1, L;

ORD := ENTIER ((ORD + 1) / 2);

BEGN INTEGER F, NN REAL M S

REAL ARRAY U, T (1 :: €RD);

L :=
T(1)

U(1)

F :4H

B- A

(rcT(A) + FCT(B)) / 2;

i

FCT ((A+ B) / 2);

.
.

1

= 1;

FOR H :=2 UNTI L ORDP-1 DO

BEGIN N := 2 * N; S := O3

M:=L/(2*N;

FORJ := 1 STEP 2 UNTIL 2 # N~ 1 10
S:=S+RT(A+J*M;

UH =S/

T(H) = (2(E - 1) + WH- 1))/ 2;

R oi=1;

END;

FORJ = H -1 STEP -1 UNTIL 1 DO

BEGAN F := 4 * F;
T(5) 1= T(3 + 1) + (2T + 1) - (D)) / (F - 1);
U() 2= 0(3 + 1) + (U(g + 1) - WJ)) /(F-1);

END,

|F CRD > 1 THEN

28

T(2) := (Y1) + T(1) /2
T(1) := 7(2) + (1(2) - T(1)) /(& * F - 1)

END;

The nanes of standard functions and standard procedures cannot appear

as actual paraneters in ALGOL W Therefore the calls to RPMBERGINT

in Section 10.3 are incorrect. However, this situation may be overcone
by declaring a procedure which returns the value of the standard function

or perfornms the conputation of the standard procedure.

EXAVPLE
REAL PRACEDURE SINE (REAL VALUE X); SIN(X);

Then a call to REMBERGINT ni ght be

A = ROMBERGINT (SINE, X(I), x(2), lo);

-EXAMPLE 6

REAL PROCEDURE TRACE (REAL ARRAY A(*,*); INTEGER VALUE N);

BEG N REAL S
s :=0;
FORI := 1 UNTIL N DO
S := S+ A(I,I);
S
END

29

EXAMPLE/

PROCEDURE COUNTUP (INTEGER X);

EXAMPLES
PROCEDURE ROOTEX (REAL VALUE X; REAL Y; PROCEDURE P);
IF X > = O THEN
Y : = SQRT(X)
ELSE
BEG N Y := SQRT(ABS X);
P
END

The actual paraneter corresponding to the formal paraneter

should be a junp statenent.

30

P

PART Il: Some Extensions of AIGOL 60 in ALGOL W

1. Procedures

1.1, Call by Result

Besides "call by value" and "call by name", ALGOL W allows parameters
to be called by result, The formal simple variable ishandled as a local
guantity although no declaration concerning this quantity is present,

The value of the simple variable is not initialized at the procedure
call, If the procedure exits normally; the value corresponding to th-
formal simple variable is assigned to the corresponding actual parameter.
The formal parameter must be assignment compatibte with the actual
parameter. To specify:a result parameter, insert the word RESULT after

the type and before the identifier (as with VALUE),

EXAMPLE
PROCEDURE PR(REAL RESULT X,Y; INTEGER VALUE I; LONG COMPLEX RESULT 2);

1.2. Call by Value Result

Formal simple variables may be called both by value and result,
This combines the calls of value and result so that the formal idenfifier
Is initialized to-the value of the corresponding actual parameter at
procedure call and the value of the formal identifier is assigned to
the corresponding actual parameter at a normal procedure exit, To
specify-a value result parameter, insert the words VALUE RESULT after

the type and before the identifiers.

EXAMPLE

PROCEDURE Q(INTEGER VALUE RESULT 1,J,K);

31

2. Procedure Calls

201. Sub-arrays as Actual Parameters

In ALGOL W, it is possible to pass any rectangular sub-array (array
of few dimensions, i.e., a generalized row) of an actual or formal array
to a procedure. Those dimensions which are to be passed to the procedure
are specified by *'s, and those which are to remain fixed are specified
by integer expressions. The number of dimensions passed must equal the

number of dimensions specified for the corresponding formal array.

EXAMPLE

-

The actual parameter may be a sub-array of a three dimensional
real array A. Examples of possible actual parameter specifications and

corresponding formal parameter specifications are listed below.

—

Actual Parameter Corresponding Formal Parameter Specification
A or A(*** real_array B(*,%*,%)
T AT, %,%) real array B(x,*)
r A(*,I,%) real array B(*,*)
A(*,%,1) real array B(*,*)
A(I,T,%) real array B(*)
A(I,%,T) real array B(*)
EXAMPLE

Read in the size of one dimension of a cubic array X, then
read in the elements of X.

Calculate and write out the sum of the traces of all possible
two dimensional arrays in A using the previously defined real procedure
TRACE.

32

BEG N

REAL SUM;
REAL PROCEDURE TRACE (REAL ARRAY A(*,*); INTEGER VALUE N);
BEGIN COMMENT THE BODY OF THIS PROCEDURE IS GIVEN IN A
PREVIOUS EXAMPLE;
END;
INTEGER N;
READ(N);
BEGIN
REAL ARRAY X(1::N,1::N,1::N);
FOR 1 :=1 UNTIL N DO
FOR J :=1 UNTIL N DO
FOR K:= 1 UNTIL N DO READON(X(I,J,k));
SUM = 0;
FOR 1 :=1 UNTIL ™ DO
SUM := SUM + TRACE(X(I,*, . "'+ TRACE (x(*,L#) N)
+ RACE (X(*,*,1),N);
WRITE (SUM)
END

. 3. String Variables

Frequently, it is desirable to manipulate sequences of characters,
This facility is available in ALGOL W in the form of string variables,,
Each variable has a fixed length specified in the string declaration,,

The form of the declaration is

33

string (<integer number>) <variable list>

The i Nt eger number must be greater than 0 and less t han or equal to
256. The specification "(<integer number>)" may be omitted; a default

length of 16 is assigned to the variables, Arrays of strings also may °

be declared,

EXAMPLE
STRING A, B, C
STRING (24) X,Y,2
STRING (10) ARRAY R, S(0::10,5::15)
In order to be able to inspect elements of the string or to

manipulate portions of the string, a substring designator is provided,

of the form:
<string identifier> (E | <integer number>)

The- expression E must be of type integer, This string expression

selects a substring of the length specified by the integer number from

the string variable beginning at the character specified by the integer

expression, The first character of the stringhasposition 0.

EXAMPLE
BEGIN STRING (5) A;
A := "QRSTU";
A (3]2):= A (0]2);
WRITE (A)

END

In this example the constant string "QRSTU", is assigned to the
variable A which is declared to be of length, 5. Then the character
positions G and 1 of A are assigned to positions 3 and 4 of A.

3l

Consequently, when the string A is written its value is QRSQR. It
should be noted that the assignments are made character by character
from left to right. If the second assignment statement in the example

above had been
A (2|3) = a(0}3)
the resulting value of A would have been QRQRQ.
The variable on the left of an assignment statement must be of
length greater than or equal to the length of the expression on the

right. Ifashorter string is assigned to a longer string, the shorter

string is extended to the right with blanks until the lengths are equal.

EXAMPLE
BEGIN STRING(5) S;
§ := "ABCDE"; S := "XY"; WRITE(S)
END;

The string XY is printed.

Strings within a CASE exprassion Or an IF expression must be all

of the same length.
All the relational operators may be used with string arguments.
The EBCDIC representations of the strings are compared character by

character. If one string is shorter than the other, the shorter string

is filled with characters less than any possible EBCDIC character..

Strings of unequal length are never equal.

35

EXAMPLE

Relation Value
"A" < "B" TRUE
Ty = e TRUE
"AT > FALSE
AL = A FALSE

k., Records and References

Records and structured quantities composed of quantities of any
of the simple types such as REAL, INTEGER, STRING, etc. Records
themselves do not have values; only the quantities which compose the

records may have values.

4.1. Record Class Declarations

Record declarations indicate the composition of a record. Unlike
simple type declarations or array declarations no storage is reserved
for a record when the record declaration is encountered. Essentially,
the record declaration only describes the form of records to be created.

The record declarations appear with all' other declarations. The form is:
RECORD V (<declarations of variables of simple type>);

The name V is the name of the record class. The variables

declared between the parentheses are called the fields of the record.

EXAMPLES
RECORD A(INTEGER I,J; REAL Z; STRING (5) S);

RECORD B(REAL X; LONG REAL IX; REAL Y);

36

The punctuation of the examples should be noted carefully., The

names ir. the list of identifiers following the indication of the simple
type are separated by ",". The list is ended with a ";" unless the

n,n

;" would immediately precede the closing ")".

k.2. Reference Declarations

REFERENCE is a simple type in ALGOL W. The value of a variable
of type reference is an address of a record. This address is some-

times called a pointer to a record.

Reference declarations appear in a program where all other declarations

appear,

FORM

REFERENCE (V) V. ;

V is a name of a record class. Vl is a name of a reference

variable or a 1list of names of reference variables separated by ",".
EXAMPLE
REFERENCE (A) R1, R2; R3;

The name V af a record class may also be a list of names
separated by ",". This list indicates the record classes to which
records referenced by the reference variables must belong.

EXAMPLE

REFERENCE (A,B) R4, R5;

R4 and R5 may point only to records of record class A or B.

37

The reserved word NULL stands for a reference constant which

fails to designate a record,

Arrays of references are declared and used analogously ¢ arrays

of other simple types. The form of the declaration is:

REFERENCE (V) ARRAY vl (<subscript bound+);

EXAMPLE

REFEKENCE (A,B) ARRAY AR1, AR2 (1::10),3::7);

The implementation requires that all reference arrays declared in
L ablock be declared in the same reference array declaration or

immediately following a reference array declaration.
‘ EXAM -1
REFERENCE (A) ARRAY AR1, AR2(1::10,3::7);

. REFERENCE (B) ARRAY Ar(2::17);

Ir the example above, any :her declaration except a reference
sy d:claration IS not allowed between the two reference array

seclarations,

Reference EXpressions

uantities of simple type reference may be used in assignment

stateuments and comparisons,

EXAMPLES
R1 :=R2
R1 := NULL
R1 = R2
Re—==R3

38

Only the relations = and—=are allowed between references. In

order to inquire to which record class a reference expression is bound,

the IS operator is provided. The form is:

E Isv

E is a reference expression and V is a name of a record class. |p,

value of the IS operator is logical, either TRUE or FALSE.

EXAMPLE

R4 IS B

4.4. Record Designators

A particular type of reference expression is the record designator.

A record designator is the name of a record class.

EXAMPLE 1
Rl := A
R4 =38

When the record class name is encountered, the value is a pointer

to a new record of that class. The values of the fields of the new

record are undefined.

AIGOL W provides a short notation for creating a record and

initializing its fields. This modified record creator has the form

V(EL) .
V is the name of the record class.

The expression list E between the
parentheses is the list of the values of the fields specified in the

order they aprear in the record class declaration.

39

EXAMPLE 2
BEGIN RECORD H (INTEGER ¢,D; STRING (2) S);
REFERENCE (H) R1;
Rl : = H(5, 8, "az")
END*
Examples 2 is a short program which declares a record class H and
one reference variable R1 whose values may point to records of class H.

One record of class H is created and each field of the record pointed

to by Rl is initialized.

4.5 Field Designators

In order to manipulate the values of the fields of a record, the

expression
v, (E)

exists in ALGOL w. E is a reference expression. v, is a field of the
record class of the record pointed to by E. The type of the field
designator is the type of the variable v,
EXAMPLES

Z(R1)

IX(RY)

Lo

r—=r—— r—

L

EXAMPIE 2 Can be rewritten as:

BEGIN RECORD H (INTEGER C,D; STRING (2) S);

REFERENCE (H) R1;

Rl:= H;
C(R1) := s,
D(R1) := g;
S(R1) : = pgn

END.

b

NOTES ON NUMBER REPRESENTATION

ON SYSTEM/360

AND RELATIONS TO ALGOL W

by

George E. Forsythe

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY
JANUARY 1968

—

<y

The following notes are intended to give the

student of Computer Science 136 some orientation

into how numbers are represented in the IBM System/360
computers. Because we are using Algol w, some refer-
ences are made to that language. However, very little
of what is said here depends on the peculiarities of
Algol W, and this exposition is mostly applicable to
Fortran or Algol 60 with slight changes in wording,

It will also do for the floating-point numbers and
full-word integers of PL/1. Users of shorter or
longer integers or decimal arithmetic in PL/1 will

need more orientation.

On 1BM'g system $60, the following units of information storage
are used:

a) the hit, a single 0 or 1
b) the m a group of eight consecutive bits
c) the (short) WLd, a group of four consecutive bytes--
i.e., 32 consecutive bits
d) the long word, a group of two consecutive short words--
i.e., eight bytes or 64 bits,
For number representation in Algol W the words and long words are
the main units of interest .

INTEGERS

Integers are stored in (short) words of the 32 bits of 8 short
word, one is reserved for the sign (0 for+ and 1 for -), leaving
31 bits to represent the magnitude, A positive or zero integer is
stored in a binary (base 2) representation Tpus 2110 (the subscript
means base 10) is stored as

0000 0000 0000 0000 0000 0000 0001 0101 .

T

sign bit
To confirm this, note that
-) I
b+1><2”‘+<>><23 + x1 gao‘xel+lx20.

o

21:_Qx250+.“+0xz
The Iarg7est integer that can be stored in a word ig

2)O+ 229 ¥ see k 21 + 20 = 231 -1 = (211#71@85647)10 .
Any attempt to create or store an integer larger than 221 1 will
produce erroneous results, and (unfortunately) the user will not always
be warned of the error, (see below,)

To save space in wri-king words on paper, each group of four bits
in a word is frequently converted to a single base-16 (hexadecimal)

digit, according to the following code:

Base base 16 base » base 16
0000 0 1000 8
0001 i 1001 9
0010 2 1010 A
0011 3 1011 B
0100 b 1100 c
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

Thus A, B, C¢,D., E, F are used as base-16 representation6 of the decimal
numbers 10,11, 12; 13, J-4, 15 respectively, Nevertheless, integers are
stored as base-2 numbers
Using hexadecimal notation, the decimal number 21 is represented
by
00000015, .

Note that 1516 iIs the base-16 representation of 21,40
Negative integers are stored in what is called the "two's complement

form", Tor example, -1 is stored as

1111 1111 1111 11311 1311 1111 111l 1111,

= FF’FFF}F‘FF16
Also, -21 is stored as

11111 1 1 1 1111 4111 1111 1111 10 1011

= FFFFFFEB,, .
T.e representation for -21 is obtained from that for +21 by changing
every 0 toland every 1 to 0, and then adding + 1 in base-2 arithmetic
tothe result, Similarly for any negative integers, Every negative
integor has 1 as its sign bit, The smallest integer storable in
System/360 is 22 = ~2147483%648 ; and is represented by 8000000016’
Another way to think of the representation of negative numbers is
to consider a 32-place binary accumulating register (the base-2 equivalent
of the decimal accumulating register in a desk calculating machine),
If one s-tarts with alil zeros in this register, one get6 t he representation
for -1 by subtracting 1. The process require6 a "borrow" to propagate
to the left all the way across the register, leaving all ones, just 86
on a decimal accumulator this would leave all nines. Continue& sub-
traction will give the representations for -2,~3, |

oo

2

From the point of view of an accumulator we can also see what
happens when we create a positive number larger than 25l -1. For
example, if we add 1 to -231-1, the resulting carry will go a1i the
way into the sign bit, leaving a sign bit of 1 with all other digits
zero . But this is the representation of 29t Thus the attempt to
produce positive numbers in the range from 27! to approximately 277
will yield a negative sign bit, Consequently, positive integers that
"overflow" into this range are sensed as negative by System/360. Any
anomalous appearance of negative integers in a computation should
lead the programmer to suspectTinkeger omeeflovh a ni s ms o f
Algol W for detecting integer overflow (not described in this document)
can be used to detect addition6 or subtractions that produce integers
outside the range from 271 1o 2241, The presence of an integer
product outside that range is not at present detectable in Algol W,
although the compiler could (and perhaps should) be modified to make
a test. Attempts to divide an integer by 0 wiil yield an error message
and an irr:levant quotient and remainder.

The behavior of sSystem/360 on integer overflow is quite different
fr~m the Burroughs B5500. 1Inth- atter machine, any integer that
overflows is replaced by a rour.d floating-1+. % number, There are
ad—~sntages to either approach t integer overflow, depending on the

a Jlication.

If the user suspects that Integers in hi6 program are getting
anywhere near 109, he should convert them to double-precision flocating-
poin* numbers by use of the Algol W operator LONG, Conversion to single-
prec . -n floating-point numbers may lose some precision,

The most important thing fcr a scientific user to remember is that
intep »~ in the range o2t to 2°1.1 are stored without any approximation.
Moreover . operations on integers (adding, subtracting, multiplying) are
done without any error, sc long a6 ali intermediate and final results
are integers between ->°% and esla«ld It is perhaps easier .o remember

as safe the interval from -2 x 109 to 2 x 109 , obtained from the
useful approximation 210 - ;05

The operations of division without remainder (called DIV in Algol
W) and taking the remainder on division (called REM in Algol W) always
give integer answers, If the divisor is 0, an error message is given,,

In Algol W two operations on integers give results that are not
stored as integers--namely / and *x.

FLOATING-POINT NUMBERS

Numbers in many scientific computations will grow in magnitude
well beyond the range of integers described above, To provide for
this, System/360 and most scientific computers have a second way to
represent numbers--the so-called floating-point representation,

The significance of the name "floating-point” is that the radix point

--for example, the decimal point in base-10 numbers-s-is permitted to

float to the right or left, thus permitting scaling of numbers by
various powers of the radix, Although a decimal point tha% has floated
off to the left will produce a number written like 0,001345, the
numbers are actually represented in a form closer to what is often
called scientific notation, here 105‘45><10'°5 .

In System/360, floating- .int numbers =re always represented in
base-16 notation;i.e., the re iIX or number base .s 16, This permits
us tc write numbers in abbrevi ted form (as we did with integers earlier),
More important, the use of base-16 conforms with the hardware arithmetic
processes in which shifting is done four bits at a time to speed up the
operations. The speed-up is achieved at a slight cost in precision,
as 1s learned from detailed error analyses which we cannot go into here.

We first consider the floating-point representation of numbers by
a single word of 2?2 bits, This is the so-called single-precision
or short real number, the number of type REAL in Algol W. The 32 bits
of a word are numbered from 0 to 31, from left to right, just to identify
them, In floating-point representation the left-hand eight bits (bits 0
to 7, equivalent to two hexadecimal digits) are devoted to the sign of
the number and the exponent of 16 associated with the number, The right-
hand 24 bits (bits 8 to 31, equivalent to six hexadecimal digits)

—

represent six significant hexadecimal digits (the significand) of the

number,

As with integers, the sign of the number is denoted by bit 0,
with O representing + and 1 representing -,

Bits 1 to 7 give the binary (base-2) representation of a non-
negative integer in the r ange 010 to 12710, inclusive. This in-
teger is called the biased exponent, for reasons now to be explained.
If this integer were taken directly as t he exponent, we woul d have no
negative exponents, and our range of floating-point nunbers coul d not
inciude such numbers as 16'25, 1% is desirable to have an exponent
range that is approximately symmetric about zero, in System/360 one
obtains the true exponent of the floating-point number DY subtracting
64 from the biased exponent represented by bits 1 to 7. Asa result,

the actual exponens:.:1ge from -64 to 63.

™ 2 bits 8 to 31 of a number are regarded as si X hexadeci nal
4git s wwith a hexadecimal point at the left-hand end, |f the floating-
point number zero is being represented, all the hexadecimal. di gi ts are
zero, as are all the other bits, Otherwise, at least one of the hexa-
decimal digits must be nonzero. .4 floating-point number is said to be
normalized if the left-hand hex :decimai digit :ccmost Signifi cant
digit) of the significand is nonzero. |n System/360 the f| oati ng- poi nt
nbers are ordinarily normalized, and we will not consider any other
forms .

We now give the floating-point representations of some sample
nunibe. s .~ As we said before, the nunber zero is represented by 32 zero
bits, i.2., by eight 0 hexadecimal digits, Thus zerois represented
by the same words in floating-point or integer form. No other number
has this property,

The number 1.0 is represented by the word

sign bit
> 0,100 oco1, 0001 0000 0000 0000 0000 0000,
biased _—
exponent significand

To check this, note thatthe sign is 0O (representing +). The biased
exponent is 1000001, or 65, . Subtracting &, yields 1 as the
true exponent. The hexadeci nal significand is 100000, . Putting a
hexadecimal point at the left end gives the hexadecimal fraction

» which equals 1/16. Thus the above word represents
& 168es 16 1 or 1.0 .

To save writing, the above word is ordinarily written in the
hexadecimal form 41100000 . While one gradually learns to recognize
some floating-point numbers in this form, the author knows no easy way
to convert such a hexadecimal word into a real number. (One just has
to take the right-hand six hexadecimal-digi%s, and prefix a hexadeci mal
point, Then one examines the left-hand two-hexadecimal-digit number
(here 41). If this is less than 8016 s the floating-point number is
positive and one gets the true exponent by subtracting l+016 =641, .
If the left-hand two-hexadecimal-digit nunber i s 80, or | arger, the
floating-point number is negative, and one gets the true exponent by
subtracting COJ,6 = 8016 + L'olé = 1%, and affixing a minus sign.
Some facility with hexadecimal arithmetic is required, if one has to
deal with such numbers.

| n this presentation, we Lave considered the radical point to be ,
at the left of the six significant hexadecimal digits, and regarded
the exponent as biased high by 6ulo . As an alternative, the reader
may prefer to place the radix point Just to the right of the most
significant digit of the significand, and regard the exponent as biased
high-by 65, - This brings the significand closer to usual scientific
notation but, of course, requires a trickier conversion to get t he
true exponent, The fact that ei t her interpretation (and many others)
are possible shows that really the radical point is just in the eye of
the beholder, and not in the computer!

Several examples of floating-point numbers are now given in hexa-
decimal notation, with the confirmation left to the reader.

decimal floating- poi nt

0.0 = 00000000
1.0 = 41100000
0. 0625 = 40100000
16.0 = 42100000
256.0 = 43100000
-1.0 = C1100000
-16.0 = 2100000
3.5 = 141380000

The largest floating-point number is 7FFFFFFF, representing
FFFFFF x1677 or (1-16%)x 162 £7.25 X 1077, (Here 10 and 16
denote decimal numbers,)

The smallest positive normalized floating-point number is 00100000,
representing

2 x 16 250 x 20777

Negatives of these two numbers can also be represented, and are
t he extremes in magnitude of representable negative numbers,

Very few numbers can be exactly represented with six significant
decimal digits. (Exercise: Which ones can?) For example, 1/3:.35353310
only approximately. In the same way, very few numbers can be exactly
represented with six significan .cxadecimal digits, (Exercise:

Which ones can?) For example, '5:.55555516 7 approxi mately.
Moreover, some numbers that are exactly representable in decimal are
only approximately representable in hexadecimal; for example,

1/10 = -100000, exactly; but

1/10 = -19999A, only approximately.

_ Thus round-off error -enters into the representation of most
floating-point numbers on System/360, and the round off differs from
that with decimal numbers. This can easily give rise to unexpected
results. For example, if the above number .19999A, ¢ (2 0.1)) is
multiplied by .the integer 10010.—461;16, one gets not A'OOOO01.6 =
10.0,, , but instead A.00003, ., asa cumilative effect of the slightly,
high approximation to 0.1,0- And A.0000316 rounds to 10,00002lo
on conversion to decimal,

The precision of a single-precision hexadecimal number is roughly
10". One can think of this as being crudely equivalent to seven sig-

7

nificant decimal digits-.

Not only do errors appear in the representation of numbers inside
System/360 (or any computer), but they arise from arithmetic operations
performed on numbers, For example, the product of two floating-point
numbers may have up to 12 significant hexadecimal digits. \When the
product is stored as a single-precision floating-point number, it must
be rounded to six hexadecimal digits, This introduces an error, even
though the factors might have been exact,

The story of round off and its effect on arithmetic is a complex
and interesting one. Only within the current decade have there begun
to appear even partly satisfactory methods to analyze round off, and
we cannot go into the matter now, Some idea of this is obtained in
Computer Science 137.

When an Algol W program assigns decimal numbers or integer values
to variables of type REAL, these are immediately converted to hexadecimal
floating-point numbers, with (usually) a round-off error, When one
outputs numbers from the computer in Algol W; they are converted to
decimal, Both conversions are done as well as possible, bu% introduce
changes in the numbers that the rrogrammer must be aware of, And, of
course, all intermediate operat+ons introduce further round offs and
possible errors, It is unthinkable to do the anaiysis necessary to
counteract these errors and get the true answer to the problem, If the
user wishes answers uncontaminated by round off, he should use integers
and integer arithmetic, and be prepared to guard against overflow,

Fortunately most users can accept an indeterminate amount of
round off in their numbers, provided they have some assurance that
round off is not growing out of control It is tte business of numerical
analysts to provide algorithms whose round-off prcperties ar e reasonably
under control. This has been well accomplished in some areas, and hardly
at all in others.

DOUBLE PRECISION

The precision of single-precision floating-point numbers seems

very adequate f or mpst scientific and engineering purposes,being at the
| evel of seven decimals, However, a considerabl e number Of computations
require Still nore precision in the mddl e somewhere, just in order to
came out with ordinary accuracy a%the end, 4s a result, System/360
has provided an easy mechani smfor getting a great deal nore precision
in the conputations, For this purpose a double word of 6k bits is used
to store a floating-point number of so-cailed double precision or long
precision. In this representation, the sign and biased exponent are
found in the firs% word of the double-word, with precisely the sane
interpretation as with Single-precision filoating-point numbers. The
second word of the doubl e-word consiste of eight hexadeci mal digits
imrediately following the six found .the firs% word, There is no
Sign or exponent i N the second word. Thus a double-word represents
asigned floating hexadeci mal nunber with 14 significant hexadeci nal

digits. As before, nonzero nunbers are normalized so that the nost

significant digit of the 1i i S nonzero.

Exanpl es:
| ong significand
1.0L = 41' 100000 00000000
0.1L = 40 199999 9999999A

There is a full set of arithmetic operations for both Single
and doubl e-preci sion operations. Very crudely, for an exanple, single-
precision nultiplication of single-precision factors takes around 4 mcro-
seconds, while that for double-precision factors takes around 7 micro-
seconds, For nodes% probl ems the extra tinme i s completely | 0st in the
several seconds of time lost to systenms and conpilers, and the use of
doubl e-precision is strongly recommended for all scientific computation,
Normal Iy the only possible disadvantage of using long precision is the
doubling in the amount of storage needed, |f one has arrays with tens
of thousands of elenents, the extra storage may be very costly, &her-
wise, it should no% matter,

since 16'14 %10"17, the doubl e-precision nunbers are crudely
equivalent in precision to 17 significant deci mal digits.

For a machine with the speed of the 260/67, a nunber precision of

9

e

e

r—

six hexadeci mal digits (roughly se ven dscimai s) . s considered very iow,
while a precision of 14 hexadecimsldigits(rougrly 17 decimals) IS
very adequate.

Tre2 floating~point arithmetic
hardware of System/360 prcvides the possibility of detecting when
numbers have gone outside the =xponent range stated above. The reader
may think that a range from rc.ghly w2
reasonable computations. Whiie exponent overflow and exponent underflow
are no% very common, they can be the cause of very elusive errors,

The evaluation of a determinant IS a common computation, and for a matrix

, 15 .
o lO'/“ suould cover all

of order 40 is quite rapidly done (if you know how), If the matrix
elements are of the quite reasonable magnitude 10"'39 the magnitude of
the determinant will be no larger than roughly POM9O (and probably
much smaller), well below ths range of representeabie floating-point
numbers, Such problems are a frequent source Of exponent underflow.
We shall not discuss here the me-hanisms of Aigol W for de%ec%ing
exponent overflow and undertlow, for these shouid be written up in
another place, Even without these, we see that floating-point numbers
behave well for numbers that are at least 1066 timesas| arge as Y%e
largest integer in %he system: Hence :seof fioating-pcoint numbers
meets almost all the problems raised by integer verfiow. And, of
course, it permits the use of a large set of' rational numbers, which

do not even enter the integer system,
ALGOLWREALS AND LONGREALS

The Algol W manual tellis how to represent real variables and
numb=r s to take advantage of both single-and double-precision, The
purpose of this section is to bring thig information into rapport with
the hardware representation of numbers. If a variabls X is declared
REAL, one word is set aside for itsvaluzs, and itwiii be stored in
single-precision floating-point form. if a variable.s declared tc be
LONG REeAL, a double-word is zet aside to hold its valuzs. and it will
be stored in double-precision form

10

If a nunber is witten in one of the decimal forms without an L
at the end, it will be rounded to single-precision, no natter how many
digits are set down, Thus 3.141592653589793%2 will be inmediately
rcunded t0 single-precision in the program and all the superfluous
digits are lost at once. Thus the assignment statenent

XX = 3,1415926535897932
will result in the double-word XX receiving a well-rounded form of =
inthe more significant half, and all zeros in the less significant
hal f! Thus one gets a precision of only approximately seven decimals
for the pain of witing 17, and this my well contamnate all the rest
of the conputation.

If one wants XX to be precise to approximtely full double precision,

one nust wite the statement in the form
XX 1= 3.1415926535897932L .
Wth the declaration REAL X the statement
X = 3,1415926535897932L

Wi ll result in X having a single-precision approximtion to ™,k as
the long representation of ™ is rounded upon assignment to X.

The reader should now go back and exanmine the specifications of
the types of various arithmetic expressions, as stated on pages 9, 10,
11 of the agol W Notes, and o. pp. 25, 26 of the Language Definition,
Some of the |ess expected effects are the follow ng: Suppose we have
declaractions

REAL X, Y, Z;

LONG ReaL XX, YY, ZZ;

INTEGER |, J, K;

Then X*Y is LONG REAL; I**J is REAL; I*X is LONG REAL;

The assignnent statement

XX 1= X 1= Y*Z

will result in XX having a single-precision rounded version of Y*zin
the nore significant half, and zeros in the less significant word,

Mreover, I*¥I is INTEGER ~ but I**2 is REAL.

11

If the reader understands the language Algol W and the preceding
pages on number representation, he should have a good basis for under-
standing the effects of mathematical algorithms . But he should always

remain wary of what a computer is actually doing to his numbers9

12

